Primordial Black Holes and their effect on the cosmic ionization history

Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

Collaborators:

Jerry Ostriker (Princeton), Katie Mack (Princeton)

Outline

- What are PBHs and why we do we care?
- Modelling accretion onto PBHs:
 - Growth of DM halos, modified Bondi solutions
 - PBHs motions and feedback processes
- Effect on the ionization history
- Effect on the CMB, new obs. constraints and Implications

Hot Big Bang theory

What are Primordial Black Holes? Can have masses from 10⁵ g to 10⁸ M !

What are Primordial Black Holes? Can have masses from 10⁵ g to 10⁸ M ! 1. Collapsed radiation (relativistic matter)

What are Primordial Black Holes?

Can have masses from 10 $5 \text{ g to } 10^8 \text{ M}$!

- 1. Collapsed radiation (relativistic matter)
- 2. Mass comparable to the Horizon mass at formation

What are Primordial Black Holes?

Can have masses from 10 $5 \text{ g to } 10^8 \text{ M}$!

- 1. Collapsed radiation (relativistic matter)
- 2. Mass comparable to the Horizon mass at formation
- **3.** Form in quasi-linear regime: 50%

What are Primordial Black Holes?

Can have masses from 10 $5 \text{ g to } 10^8 \text{ M}$!

- 1. Collapsed radiation (relativistic matter)
- 2. Mass comparable to the Horizon mass at formation
- **3.** Form in quasi-linear regime: 50%
- 4. Tiny collapsed fraction during rad. era may produce all the dark matter!

Newtonian limit easy to understand: During radiation era c_s c/ $\overline{3}$ hence R_J R_{Sch} R_h

Newtonian limit easy to understand: During radiation era c_s c/ $\overline{3}$ hence R_J R_{Sch} R_h

Any linear perturbation > $_{cr}$ 0.1 0.7 collapses into PBH with mass $M_{pbh} = f_{Hor}M_h$ where $f_{Hor} < 1$

Newtonian limit easy to understand: During radiation era c_s c/ $\overline{3}$ hence R_J R_{Sch} R_h

Any linear perturbation > $_{cr}$ 0.1 0.7 collapses into PBH with mass $M_{pbh} = f_{Hor}M_h$ where $f_{Hor} < 1$

Collapsed fraction depends on the power spectrum of initial density fluctuations and the cosmic equation of state:

- \bullet cr w where P = w is the cosmic EOS
- (M, z) exp[(_{cr}/2 (M, z))²] (assuming Gaussian fluctuations)

Radiation is redshifted away, PBHs are not:

$$p_{bh} = \frac{(1 + Z_f)}{(1 + Z_{eq})}$$

$$f_{pbh} = \frac{pbh}{dm} = \frac{M_{pbh}}{1 M} = \frac{1/2}{10^{-9}}$$

Radiation is redshifted away, PBHs are not:

$$_{pbh} = (1 + Z_f)/(1 + Z_{eq})$$

$$f_{pbh} = \frac{pbh}{dm} \qquad \frac{M_{pbh}}{1 M} \qquad \frac{1/2}{10^9}$$

- Example:
 - During QCD phase transition at $t = 10^{-5}$ sec

•
$$M_{pbh}$$
 $M_h = 1 M$

• if = 10 ⁹ f_{pbh} 1: all the dark matter is made of PBHs

Some models for PBH formation

Softening of the EOS during phase transitions: QCD (1
 M) or e⁺ e annihilation (10⁵ M)(Kholopov & Polnarev 80; Jedamzik 97)

Some models for PBH formation

- Softening of the EOS during phase transitions: QCD (1
 M) or e⁺ e annihilation (10⁵ M)(Kholopov & Polnarev 80; Jedamzik 97)
- 2. Collapse of rare density peaks: depend on the shape of inflaton potential (*e.g.*, potential as in Kawasaki et al 06 produces 100 M PBHs)

Some models for PBH formation

- Softening of the EOS during phase transitions: QCD (1
 M) or e⁺ e annihilation (10⁵ M)(Kholopov & Polnarev 80; Jedamzik 97)
- 2. Collapse of rare density peaks: depend on the shape of inflaton potential (*e.g.*, potential as in Kawasaki et al 06 produces 100 M PBHs)
- 3. Collapse of cosmic string loops (*e.g.*, Polnarev & Zemboricz 88; Hawking 89; Brandenberger & Wichoski 98)
- 4. Bubble collisions (*e.g.*, Crawford & Schramm 82; La & Steinhardt 89)

5. Collapse of domain walls (Berezin et al 83; Ipser & Sikivie MARYLASD; Rubin et al. 00) Physics Coll. Virginia Tech, 02-08-2008 – p.8/3

Do PBHs exist?

- PBHs with mass < 10^{15} g evaporate in t < t_H (Hawking 1975)
 - Abundance of PBHs with mass 1 g < M < 10^{15} g is < 10^{20} 10²² (*e.g.*, Carr 2003)
- More massive PBHs are poorly constrained:
 - They may constitute the bulk of the dark matter
 - MACHO collaboration: 20% of Milky-Way halo is in compact objects with M 0.1 1 M (but 2000 result, non confirmed by later data)

Refs: MACHO collaboration [*e.g.*, Alcock et al. (1998, 2000, 2001); Hamadache et al. 2006]; EROS collaboration; Lacey & UNIVERSITY OF MARYLANS triker 85; Moore 93; Carr 94; Afshordi, McDonald & Spergel MARYLANS coll Virginia lece, 02-08-2008 - p.10/3

1. Physics on scale otherwise unaccessible by observations

- 1. Physics on scale otherwise unaccessible by observations
- 2. The dark matter can be made of PBHs

- 1. Physics on scale otherwise unaccessible by observations
- 2. The dark matter can be made of PBHs
- 3. Produce MACHOS, IMBH and ULXs ?

- 1. Physics on scale otherwise unaccessible by observations
- 2. The dark matter can be made of PBHs
- 3. Produce MACHOS, IMBH and ULXs ?
- 4. Seeds for supermassive Black Holes?

Gas accretion onto PBHs produce X-rays and affect the ionization history of the IGM

1. Growth of "clothing" dark matter halo (100-1000 times more massive than PBH)

- 1. Growth of "clothing" dark matter halo (100-1000 times more massive than PBH)
- 2. Gas viscosity: Compton Drag and Hubble flow

- 1. Growth of "clothing" dark matter halo (100-1000 times more massive than PBH)
- 2. Gas viscosity: Compton Drag and Hubble flow
- 3. Proper motion: gas and dark matter are not perfectly coupled (Silk damping)

- 1. Growth of "clothing" dark matter halo (100-1000 times more massive than PBH)
- 2. Gas viscosity: Compton Drag and Hubble flow
- 3. Proper motion: gas and dark matter are not perfectly coupled (Silk damping)
- 4. Angular momentum of accreted gas and dark matter

- 1. Growth of "clothing" dark matter halo (100-1000 times more massive than PBH)
- 2. Gas viscosity: Compton Drag and Hubble flow
- 3. Proper motion: gas and dark matter are not perfectly coupled (Silk damping)
- 4. Angular momentum of accreted gas and dark matter
- 5. Feedback processes (global and local radiative feedbacks)

1. Clothing Dark Matter Halo

- 1. PBHs seed accumulation of dark halo ($f_{pbh} < 1$)
- 2. The gas accretion rate onto the PBH is increased!

Ref: Mack, Ostriker and Ricotti (2007)

1. Clothing Dark Matter Halo

- 1. PBHs seed accumulation of dark halo ($f_{pbh} < 1$)
- 2. The gas accretion rate onto the PBH is increased!

Ref: Mack, Ostriker and Ricotti (2007)

growth of order unity during radiation era

1

•
$$M_h = 3M_{pbh} \frac{1+z}{1000}$$

- Self-similar secondary infall solution (*e.g.*, Bertschinger 1985)
- Truncated power-law density profile with = 2.25

• Truncation at
$$r_h = r_{ta}/3$$

2. Bondi type accretion

- Spherical accretion ()
- **•** Steady-state (M < 2 10^4 M ,)
- Viscosity (Compton drag)

$$\frac{dv}{dt} = \frac{4}{3} \frac{x_{e}}{m_{p}c} V = V$$

- Hubble expansion (M > 2 10^4 M ,)
- Clothing dark halo (power-law density profile,)

Ref: Ricotti (2007)

Spherical accretion rate

- point mass
 potential (dashed curves)
- dark halo potential (solid curves)

3. Relative motion of PBHs and gas

$$\dot{M}_{g} = \frac{M^2}{v_{eff}^3}$$

where $v_{eff} = (v_{rel}^2 + c_s^2)^{1/2}$

1. Linear regime: Silk damping (i =baryons, dark matter)

$$V_i^2 = \frac{\frac{1.2}{m}H^2}{2^2} P_i(k)w_s^2(k,a)w_l^2(k,r_0)dk,$$

$$_{i}^{2} = \frac{\frac{1.2}{m}H^{2}}{2^{2}} P_{i}(k)w_{s}^{2}(k,a)[1 w_{l}^{2}(k,r_{0})]dk.$$

2. Non-linear regime: capture by mini-halos

Angular momentum of accreted material

- Dark matter:
 - Quasi-spherical accretion
 - Ang. momentum sufficiently large to avoid direct accretion of DM into PBH
- Gas:
 - Spherical accretion for M < 500 M
 - Compton drag reduces further ang. momentum (Loeb 93; Umemura et al 93)

curves from bottom to top refer to masses of PBHs from 0.1 M to 10^5 M (factor of 10 spacing).

curves from bottom to top refer to masses of PBHs from 0.1 M to 10^5 M (factor of 10 spacing).

Accretion Luminosity

Define dimensionless luminosity I = L/L_{Ed} and accretion rate $\dot{m} = \dot{M}/\dot{M}_{Ed}$, then:

 $I = \dot{m}$, where is the radiative efficiency

We assume:

- $I = 0.01 \text{ m}^2$ if m < 1 (spherical accretion)
- $I = f_{duty}(0.1\dot{m}) < f_{duty}$ if $\dot{m} > 1$ (thin disk)

5. Feedback processes

- Local feedbacks (typically negligible)
 - Size of H II region with respect to Bondi radius:
 - In most cases $r_{H_{II}}/r_B < 1$

• If
$$r_{H_{II}}/r_B > 1$$

$$I_{t} = \frac{I}{1 + t_{off}/t_{on}} = \frac{I}{1 + (r_{H_{II}}/r_{B})^{1/3}} = f_{duty}I_{I}$$

- Temperature of H II region: T_{H II} T_{cmb}
- Global feedback (X-ray heating):
 Iterative semi-analytic code (Ricotti & Ostriker 04)

Spectrum of the CMB

CMB spectral distortions

- M_{pbh} < 10 M weakly affected by Compton drag even before recombination</p>
- FIRAS y 1.5 10 ⁵ at at 95% confidence
- **9** 3 phases: $y = y_1 + y_2 + y_3 + y_1$
 - 1. $z_{rec} < z < z_{eq}$: all energy injected absorbed by gas
 - 2. $z_{dec} < z < z_{rec}$: fraction of energy absorbed by gas
 - 3. $z < z_{dec}$: Compton heating becomes negligible

Constrain on maximum energy injection imposed by:

$$y = \frac{1}{4U(z_{eq})} \frac{z_{rec}}{z_{eq}} \frac{dz}{aH(z)} \frac{d U(z)}{dt} = 1.5 \quad 10^{-5}$$

Constraints on f_{PBH}

CMB anisotropies: WMAP

CMB anisotropies: spectrum

- Cosmological parameters: m = 0.24, = 0.76, h = 0.73
- Ionization history: $z_{rei} = 12$, $_e = 0.1$

Effects of PBHs on CMB anisotropies

- Affects recombination
- Complementary and uncorrelated to reionization effects

Modified recombination history

$$x_e(z) = x_{e,rec}(z) + min x_{e0} \frac{1+z}{1000}^{1}, 0.1$$

RECFAST: Seager, Sasselov & Scott 99; COSMOMC: Lewis & Bridle 02

Created using CosmoloGUI

Т N re x_{e}^{6} $\frac{6}{10^{4}}$

Created using CosmoloGUI

Created using CosmoloGUI

New constraints on f_{PBH} and

New constraints on f_{PBH} and

Summary

- PBHs produce spectral distortions and modify recombination:
 - standard CMB perturbations analysis may underestimate 8
 and n_s if relatively massive PBHs exist (but result is more general)

Summary

- PBHs produce spectral distortions and modify recombination:
 - standard CMB perturbations analysis may underestimate 8 and n_s if relatively massive PBHs exist (but result is more general)
- Upper limits on f_{pbh} improved by a lot:
 - PBHs more massive than the moon (10²⁶ grams) cannot be the dark matter
 - PBHs may explain origin of ULXs and SMBHs

Summary

- PBHs produce spectral distortions and modify recombination:
 - standard CMB perturbations analysis may underestimate 8 and n_s if relatively massive PBHs exist (but result is more general)
- Upper limits on f_{pbh} improved by a lot:
 - PBHs more massive than the moon (10²⁶ grams) cannot be the dark matter
 - PBHs may explain origin of ULXs and SMBHs

