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Hot Big Bang theory
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What are Primordial Black Holes?
Can have masses from 10 5 g to 108 M !
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What are Primordial Black Holes?
Can have masses from 10 5 g to 108 M !

1. Collapsed radiation (relativistic matter)

2. Mass comparable to the Horizon mass at
formation

3. Form in quasi-linear regime: 50%
4. Tiny collapsed fraction during rad. era may

produce all the dark matter!
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Newtonian limit easy to understand: During radiation era
cs c/ 3 hence RJ RSch Rh

Physics Coll. Virginia Tech, 02-08-2008 – p.6/37



Newtonian limit easy to understand: During radiation era
cs c/ 3 hence RJ RSch Rh

Any linear perturbation > cr 0.1 0.7 collapses into
PBH with mass Mpbh = fHorMh where fHor < 1

Physics Coll. Virginia Tech, 02-08-2008 – p.6/37



Newtonian limit easy to understand: During radiation era
cs c/ 3 hence RJ RSch Rh

Any linear perturbation > cr 0.1 0.7 collapses into
PBH with mass Mpbh = fHorMh where fHor < 1

Collapsed fraction depends on the power spectrum of
initial density fluctuations and the cosmic equation of state:

cr w where P = w is the cosmic EOS

(M, z) exp[ ( cr/2 (M, z))2] (assuming Gaussian
fluctuations)
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Radiation is redshifted away, PBHs are not:

pbh = (1 + zf )/(1 + zeq)

fpbh = pbh

dm

Mpbh

1 M

1/2

10 9
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Radiation is redshifted away, PBHs are not:

pbh = (1 + zf )/(1 + zeq)

fpbh = pbh

dm

Mpbh

1 M

1/2

10 9

Example:

During QCD phase transition at t = 10 5 sec

Mpbh Mh = 1 M

if = 10 9 fpbh 1: all the dark matter is made
of PBHs
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Some models for PBH formation
1. Softening of the EOS during phase transitions: QCD (1

M ) or e+ e annihilation (105 M )(Kholopov & Polnarev

80; Jedamzik 97)
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Some models for PBH formation
1. Softening of the EOS during phase transitions: QCD (1

M ) or e+ e annihilation (105 M )(Kholopov & Polnarev

80; Jedamzik 97)

2. Collapse of rare density peaks: depend on the shape
of inflaton potential (e.g., potential as in Kawasaki et al 06

produces 100 M PBHs)

3. Collapse of cosmic string loops (e.g., Polnarev & Zemboricz

88; Hawking 89; Brandenberger & Wichoski 98)

4. Bubble collisions (e.g., Crawford & Schramm 82; La &

Steinhardt 89)

5. Collapse of domain walls (Berezin et al 83; Ipser & Sikivie

84; Rubin et al. 00) Physics Coll. Virginia Tech, 02-08-2008 – p.8/37



Do PBHs exist?
PBHs with mass < 1015 g evaporate in t < tH (Hawking
1975)

Abundance of PBHs with mass 1 g < M < 1015 g is
< 10 20 10 22 (e.g., Carr 2003)

More massive PBHs are poorly constrained:

They may constitute the bulk of the dark matter

MACHO collaboration: 20% of Milky-Way halo is in
compact objects with M 0.1 1 M (but 2000
result, non confirmed by later data)
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Refs: MACHO collaboration [e.g., Alcock et al. (1998, 2000,

2001); Hamadache et al. 2006]; EROS collaboration; Lacey &

Ostriker 85; Moore 93; Carr 94; Afshordi, McDonald & Spergel
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Why do we care?
1. Physics on scale otherwise unaccessible by

observations
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Why do we care?
1. Physics on scale otherwise unaccessible by

observations

2. The dark matter can be made of PBHs

3. Produce MACHOS, IMBH and ULXs ?

4. Seeds for supermassive Black Holes?
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Physics of PBHs accretion: Outline
Gas accretion onto PBHs produce X-rays and affect the
ionization history of the IGM
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Physics of PBHs accretion: Outline
Gas accretion onto PBHs produce X-rays and affect the
ionization history of the IGM

1. Growth of “clothing” dark matter halo (100-1000 times
more massive than PBH)

2. Gas viscosity: Compton Drag and Hubble flow

3. Proper motion: gas and dark matter are not perfectly
coupled (Silk damping)

4. Angular momentum of accreted gas and dark matter

5. Feedback processes (global and local radiative
feedbacks)
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1. Clothing Dark Matter Halo
1. PBHs seed accumulation of dark halo (fpbh < 1)

2. The gas accretion rate onto the PBH is increased!

Ref: Mack, Ostriker and Ricotti (2007)
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1. Clothing Dark Matter Halo
1. PBHs seed accumulation of dark halo (fpbh < 1)

2. The gas accretion rate onto the PBH is increased!

Ref: Mack, Ostriker and Ricotti (2007)

growth of order unity during radiation era

Mh = 3Mpbh
1+z
1000

1

Self-similar secondary infall solution (e.g., Bertschinger
1985)

Truncated power-law density profile with = 2.25

Truncation at rh = rta/3
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2. Bondi type accretion
Spherical accretion ( )

Steady-state (M < 2 104 M , )

Viscosity (Compton drag)

dv
dt

= 4
3

xe T Ucmb

mpc
v = v

Hubble expansion (M > 2 104 M , )

Clothing dark halo (power-law density profile, )

Ref: Ricotti (2007)
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Spherical accretion rate

point mass
potential (dashed
curves)

dark halo poten-
tial (solid curves)
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3. Relative motion of PBHs and gas

Ṁg
M 2

v3
eff

where veff = (v2
rel + c2

s)1/2

1. Linear regime: Silk damping (i =baryons, dark matter)

Vi
2 =

1.2
m H2

2 2
0

Pi(k)w2
s(k, a)w2

l (k, r0)dk,

i
2 =

1.2
m H2

2 2
0

Pi(k)w2
s(k, a)[1 w2

l (k, r0)]dk.

2. Non-linear regime: capture by mini-halos
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Angular momentum of accreted material

Dark matter:

Quasi-spherical accretion

Ang. momentum sufficiently large to avoid direct
accretion of DM into PBH

Gas:

Spherical accretion for M < 500 M

Compton drag reduces further ang. momentum
(Loeb 93; Umemura et al 93)
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4. Accretion rate neglecting feedback

curves from bottom to top refer to masses of PBHs from

0.1 M to 105 M (factor of 10 spacing).
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Accretion Luminosity

Define dimensionless luminosity l = L/LEd and accretion
rate ṁ = Ṁ/ṀEd, then:
l = ṁ, where is the radiative efficiency

We assume:

l = 0.01ṁ2 if ṁ < 1 (spherical accretion)

l = fduty(0.1ṁ) < fduty if ṁ > 1 (thin disk)
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5. Feedback processes
Local feedbacks (typically negligible)

Size of H II region with respect to Bondi radius:

In most cases rH II/rB < 1
If rH II/rB > 1

l t = l
1 + toff/ton

= l
1 + (rH II/rB)1/3 = fdutyl

Temperature of H II region: TH II Tcmb

Global feedback (X-ray heating):
Iterative semi-analytic code (Ricotti & Ostriker 04)
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Cosmic ionization, thermal, and chem-
ical history

Simulations:
Mpbh = 100,
fpbh = 10 4

Physics Coll. Virginia Tech, 02-08-2008 – p.22/37



Cosmic ionization, thermal, and chem-
ical history

Simulations:
Mpbh = 1000,
fpbh = 10 7
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Cosmic ionization, thermal, and chem-
ical history

Simulations:
Mpbh = 1000,
fpbh = 10 6
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Spectrum of the CMB
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CMB spectral distortions
Mpbh < 10 M weakly affected by Compton drag even
before recombination

FIRAS y 1.5 10 5 at at 95% confidence

3 phases: y = y1 + y2 + y3 y1

1. zrec < z < zeq: all energy injected absorbed by gas

2. zdec < z < zrec: fraction of energy absorbed by gas

3. z < zdec: Compton heating becomes negligible

Constrain on maximum energy injection imposed by:

y = 1
4U(zeq)

zrec

zeq

dz
aH(z)

d U(z)
dt

1.5 10 5
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Constraints on fPBH
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CMB anisotropies: WMAP
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CMB anisotropies: spectrum

Cosmological
parameters:

m = 0.24, =
0.76, h = 0.73
Initial density
perturbations:

8 = 0.74, ns =
0.95 (little power at
small scales!)

Ionization history:
zrei = 12, e = 0.1
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Effects of PBHs on CMB anisotropies

Affects
recombination

Complementary
and uncorrelated
to reionization
effects

Affect small angu-
lar scales: l>10
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Modified recombination history

xe(z) = xe,rec(z) + min xe0
1 + z
1000

1
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New constraints on fPBH and
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Summary
PBHs probe high-energy physics, dark matter candidate?

PBHs produce spectral distortions and modify
recombination:

standard CMB perturbations analysis may underestimate 8

and ns if relativelly massive PBHs exist (but result is more

general)

Upper limits on fpbh improved by a lot:

PBHs more massive than the moon ( 1026 grams) cannot be

the dark matter

PBHs may explain origin of ULXs and SMBHs

PBHs promote formation of primordial H2 and first stars
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