Dissecting the Gravitational Lens B1608+656: Implications for the Hubble Constant

Sherry Suyu (Caltech)

Roger Blandford (KIPAC) Chris Fassnacht (UC Davis) Phil Marshall (UC SB) John McKean (MPIfR) Leon Koopmans (Kapteyn Institute) Tommaso Treu (UC SB)

> July 5, 2007 IAP, Paris

- Why is H_0 important and how is strong lensing useful for H_0
- Pixellated Potential Reconstruction
 - source intensity reconstruction
 - Iens potential correction
- *HST* ACS observations of B1608+656
- Potential Reconstruction of B1608+656
 - \succ implication for H_0

- Why is H_0 important and how is strong lensing useful for H_0
- Pixellated Potential Reconstruction
 - \succ source intensity reconstruction
 - Iens potential correction
- *HST* ACS observations of B1608+656
- Potential Reconstruction of B1608+656
 - \succ implication for H_0

Why is H_0 important

- Age of Universe ~ $1/H_0$
- Size of Universe ~ c/H_0
- H_0 determines the critical density
- H_0 is the single most useful complement to CMB parameters for dark energy studies (Hu 2005)

Methods for Measuring H₀ [km s⁻¹ Mpc⁻¹]

• HST Key Project:

 $H_0=72 \pm 2(\text{stat}) \pm 7(\text{syst})$ [Freedman et al. 2001]

• CMB:

 $H_0 = 73 \pm 3$ [Spergel et al. 2006]

Strong Gravitational Lensing

July 5, 2007

B1608+656

 $z_{d} = 0.63$ [Myers et al. 1995] $z_{s} = 1.39$ [Fassnacht et al. 1996]

B1608+656 provides opportunity to measure H_0 to high precision. \Rightarrow pixellated potential reconstruction

 $\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$ $\vec{\alpha}(\vec{\theta}) = \vec{\nabla}\psi(\vec{\theta})$

Time delay function: $T(\vec{\theta}, \vec{\beta}) \sim \frac{1}{H_0} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right]$

Goal

Fermat pot. ϕ

5

➢ Relative time delays
 [Fassnacht et al. 1999, 2002]
 Δt_{AB} = 31.5 ± 1.5 days
 Δt_{CB} = 36.0 ± 1.5 days
 Δt_{CB} = 77.0 ± 1.5 days

 ➢ Extended source intensity

July 5, 2007

- Why is H_0 important and how is strong lensing useful for H_0
- Pixellated Potential Reconstruction
 - source intensity reconstruction
 - lens potential correction
- *HST* ACS observations of B1608+656
- Potential Reconstruction of B1608+656
 - \triangleright implication for H_0

July 5, 2007

Dissecting the gravitational lens B1608+656

6

Demo Pot. Rec. – simulated data

- ~Gaussian + Point Source
- $z_s = 3.0$
- $N_s = 30 \times 30$

- SIEs: *v*=260 km/s, *q*=0.75, PA=45° *v*=50 km/s, *q*=0.60, PA=70°
- Gaussian PSF (FWHM=0.15'') uniform Gaussian noise (σ=0.043)
- $z_d = 0.3$ and $N_d = 100 \times 100$

Perturbed potential: rotation of primary SIE by 5° & absent secondary SIE

July 5, 2007

Dissecting the gravitational lens B1608+656

8

Demo Pot. Rec. – Iteration 0 results Intensity Deficit - it=0 Original Source Recon Source - it=0 simulated 2.8 I 2.8 data 0.2 1.5 l.5 Simulated Data arcsec 2.6 arcsec 2.6 arcse 0 β2 2.42 β2 2.4 0.5 0.5 0.5 -0.2 2.2 2.2 0 0 2.8 2.8 2.2 2.6 2.2 2.4 2.6 2.4 0 2 4 0 ò 2 β_1 / arcsec β_1 / arcsec θ_1 / arcsec θ_1 / arcsec

 θ_1 / arcsec

Dissecting the gravitational lens B1608+656

 θ_1 / arcsec

9

 θ_1 / arcsec

July 5, 2007

- Why is H_0 important and how is strong lensing useful for H_0
- Bayesian Pixellated Potential Reconstruction
 - source intensity reconstruction
 - lens potential correction
- *HST* ACS observations of B1608+656
- Potential Reconstruction of B1608+656
 - \triangleright implication for H_0

HST ACS Observations

Utopia

obs. pred. noise d = BLs + nblurring (PSF) Lensing source (ψ)

Reality lens galaxies lens extended galaxies obs. source noise $d = \mathsf{BKL}s + \mathsf{BK}g + n$ $\mathbf{B} =$ blurring (PSF) $\mathbf{K} =$ dust extinction $L = lensing(\psi)$ g = lens' light \Rightarrow Use Bayesian evidence to rank models B, K, L, g 14

July 5, 2007

HST Image Analysis	Prelim. Results
Drizzled F814W PSF - B1 F814W - bright star #1	extended lens obs. source galaxies noise d = BKLs + BKg + n $B = blurring \ K = dust \ extinction$ $L = lensing \ g = lens' \ light$
Dust Extinction A _V Lenses (Sersic)	Given the models B , K , <i>g</i> and initial L • can apply pixellated potential reconstruction method to correct $L(\psi)$ and get <i>s</i> \geq ACS data
$= \underbrace{\begin{array}{c} & & \\ &$	> time delays with input $H_0=76 \text{ km s}^{-1} \text{ Mpc}^{-1}$

July 5, 2007

HST Image Analysis Prelim. Results

Model	PSF	dust map	$(n_{\rm G1}, n_{\rm G2})$
2	drz	drz/3-band	(3,3)
3	С	C/3-band	(3,4)
4	С	C/2-band	(3,3)
5	B 1	B1/3-band	(3,4)
6	B 1	B1/2-band	(2,2)
7	B2	B2/3-band	(2,2)
8	B2	B2/2-band	(2,2)
9	С	B1/3-band	(3,4)
10	B 1	C/2-band	(3,3)

+ Koopmans et al. (2003) SPLE1+D model

extended lens obs. source galaxies noise $d = \mathsf{BKL}s + \mathsf{BK}g + n$ $\mathsf{B} = \mathsf{blurring} \ \mathsf{K} = \mathsf{dust} \ \mathsf{extinction}$ $\mathsf{L} = \mathsf{lensing} \ g = \mathsf{lens'} \ \mathsf{light}$

Given the models B, K, gand initial L

- can apply pixellated potential reconstruction method to correct $\lfloor(\psi)$ and get s
 - ► ACS data
 - ➤ time delays with input $H_0=76 \text{ km s}^{-1} \text{ Mpc}^{-1}$

July 5, 2007

- Why is H_0 important and how is strong lensing useful for H_0
- Pixellated Potential Reconstruction
 - source intensity reconstruction
 - Iens potential correction
- *HST* ACS observations of B1608+656
- Potential Reconstruction of B1608+656
 ➢ implication for H₀

H_0 : error from modeling (preliminary)

Model	PSF	dust map	H_0^{AB}	H_0^{CB}	$H_0^{\rm DB}$	σ_{H_0}	log evidence
5	B 1	B1/3-band	77.8	77.2	75.2	1.3	1.64×10^4
3	С	C/3-band	76.4	76.6	75.1	0.7	1.46×10^4
9	С	B1/3-band	72.8	73.0	73.5	2.9	3.89×10 ³
2	drz	drz/3-band	79.4	79.3	74.5	2.8	-1.35×10^{3}
10	B 1	C/2-band	76.7	74.9	74.2	1.3	-1.79×10^{3}
7	B2	B2/3-band	71.9	72.2	74.8	3.3	-4.26×10^{3}
6	B 1	B1/2-band	65.8	66.6	71.7	8.4	-5.86×10^{3}
4	С	C/2-band	66.0	67.4	71.4	8.1	-9.69×10^{3}
8	B2	B2/2-band	61.5	62.8	72.0	11.6	-1.67×10^{4}

generally, good/bad model with high/low evidence leads to good/bad H₀ recovery
in good models, error in H₀ ~ smallest time delay uncertainty (t^{DB} = 77.0 ± 1.5 days) ⇒ conservatively adopt modeling (statistical) error of ±2 km s⁻¹ Mpc⁻¹

H_0 : error from modeling (preliminary)

H_0 : error from modeling (preliminary)

Model	PSF	dust map	H_0^{AB}	H_0^{CB}	$H_0^{\rm DB}$	σ_{H_0}	log evidence
5	B1	B1/3-band	77.8	77.2	75.2	1.3	1.64×10^{4}
3	С	C/3-band	76.4	76.6	75.1	0.7	1.46×10^4
9	С	B1/3-band	72.8	73.0	73.5	2.9	3.89×10 ³
2	drz	drz/3-band	79.4	79.3	74.5	2.8	-1.35×10^{3}
10	B1	C/2-band	76.7	74.9	74.2	1.3	-1.79×10^{3}
7	B2	B2/3-band	71.9	72.2	74.8	3.3	-4.26×10^{3}
6	B1	B1/2-band	65.8	66.6	71.7	8.4	-5.86×10^{3}
4	С	C/2-band	66.0	67.4	71.4	8.1	-9.69×10^{3}
8	B2	B2/2-band	61.5	62.8	72.0	11.6	-1.67×10^{4}

generally, good/bad model with high/low evidence leads to good/bad H₀ recovery
in good models, error in H₀ ~ smallest time delay uncertainty (t^{DB} = 77.0 ± 1.5 days) ⇒ conservatively adopt modeling (statistical) error of ±2 km s⁻¹ Mpc⁻¹

H_0 : error from mass sheet degeneracy

To break the MSD: • stellar dynamics

- $\sigma_{G1} = 247 \pm 35$ km/s [Koopmans et. al. 2003]
- error on σ_{G1} constrains amount of κ_c
- Stellar dynamics constrains error due to MSD to be $\pm 7 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- lens environment of B1608+656
 - Spectroscopic survey discovered 4 galaxy groups along line of sight to B1608+656 with one group at z_d [Fassnacht et. al. 2006]
 - each group contains ~10 members and provides $\kappa_c \sim 0.005 0.06$
 - B1608+656 appears to lie along an over dense line-of-sight. Preliminarily, estimate $\kappa_c = 0.05 \pm 0.05$ [Fassnacht et. al., in prep]

 \rightarrow $H_0 = 72 \pm 2$ (stat.) ± 4 (syst.) km s⁻¹ Mpc⁻¹

July 5, 2007

Summary

- Bayesian Source and Potential Reconstruction:
 - iterative and perturbative potential correction scheme works for potential perturbations of ~5%
- *HST* observations of B1608+656:
 - obtained a representative suite of PSF, dust, and lens galaxies' light models using ACS and NICMOS images
- Potential reconstruction of B1608+656:
 - corrected initial potential SPLE1+D(isotropic) on a grid of pixels for each set of PSF, dust, lens galaxies' light models.
 - Bayesian techniques can be used to compare objectively different PSF, dust, lens galaxy light, and lens potential model and used to quantify modeling (statistical) error.
 - ➢ Mass sheet degeneracy is the strongest systematic error
 - $H_0 = 72 \pm 2(\text{stat.}) \pm 4(\text{syst.}) \text{ km s}^{-1} \text{ Mpc}^{-1}$