Magnification & dust reddening by galaxies and large-scale structures

Brice Ménard (CITA)

in collaboration with

Ryan Scranton Masataka Fukugita Gordon Richards

Gravitational magnification of point sources

Measuring magnification effects

Measuring magnification effects

- <u>for an isolated source</u>: $L_{obs} = \mu L_0$
- for an ensemble of sources:

 $n_{obs}(>L) = 1/\mu n_0(>L/\mu)$

Fainter objects become detectable

Dilatation of the sky solid angle

if $n_0(>L) / L^{-2.5\alpha}$ then

$$n_{obs}($$

if $\mu = 1 + \delta \mu$ then

$$n_{obs}(\leq m) = (\alpha - 1) \cdot \delta \mu \cdot n_0(\leq m)$$

The magnification bias

- Webster et al. (1988)
- Narayan (1989) Schneider (1989)
- Broadhurst (1995)
- Fort, Mellier & Dantel-Fort (1996)

excess of QSOs around foreground galaxies

Lensing => QSO-galaxy correlations

Magnification bias detected from A1689

Magnification bias detected in Cl 0024+1654

Magnification bias around clusters

- Webster et al. (1988)
- Narayan (1989) Schneider (1989)
- Broadhurst (1995)

• Broadhurst et al. (2004)

• Fort, Mellier & Dantel-Fort (1996)

excess of QSOs around foreground galaxies

Lensing => QSO-galaxy correlations

Magnification bias detected from A 1689

Magnification bias detected in Cl 0024+1654

The magnification bias with the SDSS

Scranton, Ménard et al., 2005

- 5000 deg²
- 225,000 photometric quasars with photoZ > 1
- 13.5 million galaxies

Both quasars and galaxies come from the same photometric survey

• masks applied around bright objects and bad seeing regions

Analysis with the Sloan Digital Sky Survey

Scranton, Ménard et al., 2005

GOAL: to demonstrate that the signal is due to lensing

W_{QG}(θ) = 2 [α (**m**) - 1] < $\kappa \delta_g$ >

Detection of Cosmic Magnification with the SDSS

Quasar number counts

Correlation: Second moment (m)

Magnification as a function of scale

Measuring magnitude shifts

Lensing effects *cannot* be observed — Observable effects

Magnitude change: $< m_{QSO}$. $N_{galaxies} > (theta)$

Reddening by LSS

Estimators for the signal

Number count change: $< N_{QSO} . N_{galaxies} > (theta)$

Magnitude change: < m_{QSO} . N_{galaxies} > (theta)

expected change:
$$\delta m_{\lambda} = -2.5 \log \mu + \frac{2.5}{\ln 10} \tau \left(\frac{\lambda}{1+z}\right)$$

Color change: $< (m_{QSO} - m_{QSO}')$. N_{galaxies} > (theta)

Reddening by LSS

Mass profile from magnification

Extinction curve

Zaritsky (1994) "Preliminary evidence for dust in galactic halos"

FIG. 5. Color differences for the eight fields are plotted. The colors are normalized to produce zero mean B-I color in the outer fields. Dotted error bar crosses represent results from the individual eight fields, with the height representing the 1σ uncertainty in the color differences and the width rep-

Extinction curve

Extinction profile

Mass profiles

Dust bias

Summary

The magnification bias due to galaxies is detected on scales ranging from ~20 kpc to 50 Mpc.

We are now able to detect the effects of dust reddening due to galaxies on the same scales.

We are now measuring the signal for blue/red galaxies, groups and clusters.

Upcoming surveys will allow us to measure these signals as a function of redshift and investigate the properties of dust around galaxies.