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gravitational lensing entails a remapping of the primary CMB 
anisotropies

Deflection σ(d)~2’ coherent on degree scales

Clearly next frontier for CMB studies 
Could contaminate CMB polarization based primordial 
gravity wave detection if not “cleaned”
also yield unique cosmological constraints (e.g. mν=0.04ev 
with planck alone, lesgourgues et al. 06)  
different systematics: no overlap between sources and 
lenses, well defined z source plane (0.09% in z...), well 
understood PSF...

CMB Lensing

blanchard & Schneider 87
zaldarriaga & Seljak 98

Benabed & bernardeau 00
Okamoto & Hu 03

Lewis & challinor 06
...
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T̃ (n̂) = T (n̂+d(n̂))

deflection field (linear theory)

Lensing potential

Can we measure it now with WMAP?

da(n̂) = ∇aφ(n̂)



... but Cross-power spectrum of Φ 
with some tracer of the 
gravitational potential, eg  a galaxy 
survey, could yield a detection... 
Analogous to the TE signal for CMB 
analysis

Cross-correlation is also 
advantageous in terms of 
systematics control

Approach already studied by Hirata 
et al. 04 where WMAP-yr1 and SDSS 
LRGs were used to obtain a 1σ 
result

Auto- and cross- Correlations
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FIG. 2: Left panel: Auto power spectrum Cφφ
" of the CMB

lensing potential, and reconstruction noise power spectrum
Nφφ

" (Eq. (4)) at three-year WMAP noise levels. Right

panel: Cross power spectrum Cφg
" between the CMB lens-

ing potential and NVSS galaxy counts, and the effective
noise power spectrum [Nφφ

" Ngg
" /2]1/2 for detecting the cross-

correlation. The “boost” in signal-to-noise between the two
cases is sufficient to obtain a several-sigma detection of CMB
lensing.

How can CMB lensing be detected in data? At
the power spectrum level, lensing slightly smoothes the
acoustic peaks in the temperature power spectrum CTT

!
and adds power in the damping tail [52]. However, these
effects are too small to be detectable in existing datasets.
Going beyond the power spectrum, the effect of CMB
lensing on higher-point statistics of the CMB is stronger
and requires less instrumental sensitivity to detect [53].

The theory of CMB lens reconstruction [54–57] pro-
vides a framework for extracting this higher-point signal
which we will use throughout this paper. One first de-
fines a quadratic (in the CMB temperature T ) estimator
for the CMB lensing potential φ. The simplest higher-
point estimator for detecting CMB lensing would be the
power spectrum Cφφ

! : a quadratic estimator in the recon-
struction φ or a four-point estimator in T .

However, the three-year WMAP data do not have suf-
ficient sensitivity to detect CMB lensing via the auto
power spectrum Cφφ

! . This can be seen by considering
the statistical “noise” in the reconstruction; in [54] it is
shown that the reconstruction noise power spectrum Nφφ

!
is given by:
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In Fig. 2 (left panel) we have shown the noise power
spectrum Nφφ

! for three-year WMAP sensitivity, with

the fiducial signal power spectrum Cφφ
! shown for com-

parison. Although the CMB temperature anisotropies
are signal-dominated across a wide range of angular
scales (Fig. 1), the lens reconstruction is highly noise-
dominated. At this level of signal-to-noise, an “internal”
(to WMAP) detection of CMB lensing, by measuring the
auto power spectrum Cφφ

! , is not possible.
It is frequently the case that a signal which is too

noisy for internal detection can nonetheless be detected
via cross-correlation to a second, less noisy signal. (For
example, the first-year WMAP data had poor sensitivity
to the EE polarization signal, but contained a many-
sigma detection of CMB polarization via the TE cross-
correlation [58]). In this paper, we will detect the lens-
ing signal in WMAP by cross-correlating to radio galaxy
counts in NVSS, thus detecting a nonzero cross power
spectrum Cφg

! . The galaxy field g is much less noisy than
φ (Fig. 1), but the two fields have a significant redshift
range in common and so are highly correlated; the cor-
relation in the fiducial model is ∼ 0.65 on angular scales
" ! 100. Therefore, the effective signal-to-noise is higher
for the cross-correlation (Fig. 2, right panel). A forecast
based on this signal-to-noise ratio, and the assumption
of simple fsky scaling, predicts that a ∼3.5σ detection
can be made. If the same forecast is repeated using the
parameters from [44] (i.e. first-year WMAP sensitivity
and Sloan LRG’s over 4000 deg2), we find a ∼1σ result,
in agreement with previous results.

In addition to the improved statistical errors from
higher signal-to-noise, obtaining the detection as a cross-
correlation is more robust to systematics, as we will see
in detail in §V-§VIII. Any source of systematic contami-
nation which appears in either WMAP or NVSS, but not
both, will not bias our estimates for the cross power spec-
trum Cφg

! , since it does not correlate the two surveys. At
worst, such a contaminant can affect the statistical sig-
nificance of the detection, by increasing the error bars on
each bandpower.

Our estimator for Cφg
! will be defined by cross-

correlating the quadratic reconstruction of the lensing
potential φ to the NVSS overdensity field g. Thus the
estimator is three-point: two-point in the CMB temper-
ature and one-point in the galaxy field. The same three-
point estimator can also be derived from the general the-
ory of bispectrum estimation [59–61].

The most general three-point correlation between two
CMB multipoles and one galaxy multipole which is al-
lowed by rotational and parity invariance is of the form:

〈aT
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This equation defines the bispectrum b!1!2!3 . (More prop-
erly, with the G!1!2!3 prefactor included, we have defined
the “reduced bispectrum” in Eq. (8); with this prefactor
b!1!2!3 reduces to the flat sky bispectrum in the limit of
large " [62].) Whenever we write bispectra in this paper,
"1, "2 are understood to denote CMB multipoles and "3

denotes a galaxy multipole.
From this perspective, the CMB lensing signal simply

gives a contribution to the bispectrum which we want to

!4Cφg
!
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are signal-dominated across a wide range of angular
scales (Fig. 1), the lens reconstruction is highly noise-
dominated. At this level of signal-to-noise, an “internal”
(to WMAP) detection of CMB lensing, by measuring the
auto power spectrum Cφφ

! , is not possible.
It is frequently the case that a signal which is too

noisy for internal detection can nonetheless be detected
via cross-correlation to a second, less noisy signal. (For
example, the first-year WMAP data had poor sensitivity
to the EE polarization signal, but contained a many-
sigma detection of CMB polarization via the TE cross-
correlation [58]). In this paper, we will detect the lens-
ing signal in WMAP by cross-correlating to radio galaxy
counts in NVSS, thus detecting a nonzero cross power
spectrum Cφg

! . The galaxy field g is much less noisy than
φ (Fig. 1), but the two fields have a significant redshift
range in common and so are highly correlated; the cor-
relation in the fiducial model is ∼ 0.65 on angular scales
" ! 100. Therefore, the effective signal-to-noise is higher
for the cross-correlation (Fig. 2, right panel). A forecast
based on this signal-to-noise ratio, and the assumption
of simple fsky scaling, predicts that a ∼3.5σ detection
can be made. If the same forecast is repeated using the
parameters from [44] (i.e. first-year WMAP sensitivity
and Sloan LRG’s over 4000 deg2), we find a ∼1σ result,
in agreement with previous results.

In addition to the improved statistical errors from
higher signal-to-noise, obtaining the detection as a cross-
correlation is more robust to systematics, as we will see
in detail in §V-§VIII. Any source of systematic contami-
nation which appears in either WMAP or NVSS, but not
both, will not bias our estimates for the cross power spec-
trum Cφg

! , since it does not correlate the two surveys. At
worst, such a contaminant can affect the statistical sig-
nificance of the detection, by increasing the error bars on
each bandpower.

Our estimator for Cφg
! will be defined by cross-

correlating the quadratic reconstruction of the lensing
potential φ to the NVSS overdensity field g. Thus the
estimator is three-point: two-point in the CMB temper-
ature and one-point in the galaxy field. The same three-
point estimator can also be derived from the general the-
ory of bispectrum estimation [59–61].
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This equation defines the bispectrum b!1!2!3 . (More prop-
erly, with the G!1!2!3 prefactor included, we have defined
the “reduced bispectrum” in Eq. (8); with this prefactor
b!1!2!3 reduces to the flat sky bispectrum in the limit of
large " [62].) Whenever we write bispectra in this paper,
"1, "2 are understood to denote CMB multipoles and "3

denotes a galaxy multipole.
From this perspective, the CMB lensing signal simply

gives a contribution to the bispectrum which we want to

 Gravitational Lensing Effect on the CMB temperature Auto power 
spectrum is too small to be detected by WMAP (~0.3σ)
 Auto-power spectrum of Φ is not measurable for WMAP (~1σ)...



datasets

3 yr public temperature maps
3 bands (Q, V and W) combined or not
Use Kp0 mask to cover 79% of the sky
(galactic emissions and pt sources)
Take into account, for each DA:

beam window functions (circular) 
exact beam patterns

Exact inhomogeneous noise patterns

WMAP NVSS

– 102 –

difference

3-year

1-year

+200-200 T( K)

+30-30 T( K)

Fig. 9.— top: The first-year ILC map reproduced from Bennett et al. (2003c). middle: The
three-year ILC map produced following the steps outlined in §5.2. bottom: The difference

between the two (1-yr − 3-yr). The primary reason for the difference is the new bias
correction (Figure 8). The low-l change noted in §3 and shown in Figure 3 is also apparent.

NVSS: NRAO VLA Sky Survey

1.4 GHz sky catalog, 50% complete at 2.5 mJy.

Mostly AGN-powered radio galaxies, quasars, nearby star-forming
galaxies

Well-suited for cross-correlating to
WMAP lensing potential:

! Nearly full sky coverage
(fsky = 0.82)

! Low shot noise (Ngal ∼ 1.8× 106)

! High median redshift (z ∼ 0.9)

NRAO VLA Sky Survey
1.4 GHz continuum survey 50% complete 
at 2.5mJy
AGN powered radio galaxies, quasars, 
near star-forming galaxies  
Covers 82% of the sky
After removing bright objects (>1jy)and 
low galactic latitude (|b|<10), We ended 
up using 1.29 106 gal., ie 1.6 105 gal/
steradian
Redshift distribution has a mean of 0.89 
and peaks around 1. 

Hinshaw et al. 06 Condon et al. 98



Optimal estimator

∑
!m

φ̃!mY!m(x) = ∇a [α(x)∇aβ(x)]
α(x) = ∑
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(
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1- Reconstruction of the lensing potential with a quadratic 
estimator: divergence of the temperature weighted gradient 

2- Cross-correlation with the weighted Galaxy density field

Two stage process

(S+N)-1 Weighting applied to (7’)2 pixels masked maps using a 
Conjugate Gradient algorithm with a multi-grid preconditioner
Equivalent to the optimal bispectra estimator 〈TlmTlmglm〉
We developed the associated measurement/simulation pipeline 
(~1 min-cpu/real) (cf Sudeep’s talk)



Estimator sensitivity

Most weights come from a coupling between the large 
scales Galaxy distribution (l~50, ~4 deg.) and smallest 
angular scales of the CMB  (l~400, ~0.5 deg.)
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FIG. 3: Mean contribution to the squared total detection
significance σ2 per NVSS galaxy multipole "3 (left panel),
and per unit increase in maximum CMB multipole "CMB

max =
max("1, "2) (right panel). Most of the statistical weight comes
from galaxy multipoles near " ∼ 50, and CMB multipoles near
" ∼ 400.

measure. The lensing bispectrum is proportional to Cφg
" :

b"1"2"3 = (f"1"2"3C
TT
"2 + f"2"1"3C

TT
"1 )Cφg

"3
(9)

One can think of this as a single bispectrum which is
estimated to give an overall detection, or a linear combi-
nation of independent bispectra corresponding to band-
powers in Cφg

" .
In Appendix B, we show that the lens reconstruction

and bispectrum formalisms are equivalent, so that it is
a matter of convenience which to use. In this paper, we
have generally used the lens reconstruction formalism,
but will occasionally refer to the bispectrum formalism
when it provides additional perspective.

One issue which is clearer from the bispectrum per-
spective is the distribution of statistical weight. Suppose
we consider the total squared detection significance σ2,
rather than splitting the signal into bandpowers. Start-
ing from the bispectrum in Eq. (9), one can write σ2

as a sum over multipoles ("1, "2, "3). In Fig. 3, we have
split up this sum to show the contribution per multipole.
(Since there are two CMB multipoles, we show the con-
tribution per unit increase in the maximum multipole
"CMB
max = max("1, "2).) It is seen that the greatest statis-

tical weight comes from galaxy multipoles near "3 ∼ 50,
and CMB multipoles near " ∼ 400 corresponding to an
acoustic trough in the primary CMB. In bispectrum lan-
guage, most of the signal is in “squeezed” triangles where
the galaxy wavenumber is much smaller than the two
CMB wavenumbers. This corresponds to the intuitive
statement that lens reconstruction estimates degree-scale
lenses indirectly through their effect on smaller-scale hot
and cold spots in the CMB.

IV. PIPELINE

In this section, we describe our simulation and analy-
sis pipeline for estimating the cross power spectrum Cφg

"
from the WMAP and NVSS datasets, and present re-
sults with statistical errors. (Systematics will be treated
in §V-§VIII.)

(1)
!

Gaussian fields {g!m, φ!m, aunlensed
!m }

!
(2)

!

(4)Lensed CMB alensed
!m

!
(3)

NVSS data

!
(7)

Filtered galaxy
field eg!m

"
"

"
""#

WMAP data

!
(5)

Filtered CMB ea!m

!
(6)

Reconstructed
potential eφ!m

$
$$%

(8)

Lensing estimator bCφg
b

FIG. 4: Simulation + analysis pipeline used in this paper; the
stages (1)-(7) are described in detail in §IV.

A. Pipeline description

Our pipeline is shown in Fig. 4. Steps (1)-(4) represent
the simulation direction and produce simulated WMAP
and NVSS datasets with CMB lensing. Steps (5)-(8) are
the analysis direction and produce power spectrum es-
timates Ĉφg

b in bands b, starting from the WMAP and
NVSS datasets. We now describe each step in detail.

The first step (1) is simulating Gaussian fields: the
unlensed CMB temperature, lensing potential, and (shot
noise free) radio galaxy field g. We use the power spectra
CTT

" , Cφφ
" , Cgg

" , Cφg
" in the fiducial model. The last two

are computed using the Limber approximation (e.g. [63])
and a simple constant galaxy bias model: we take the
galaxy overdensity to be given by the line of sight integral

δg(n̂) = bg

∫
dχdN

dχ δ(χn̂, η0 − χ)
∫

dχdN
dχ

(10)

using a fiducial redshift distribution dN/dχ and galaxy
bias bg that will be discussed in the next section.

In step (2), we compute the lensed CMB from the lens-
ing potential and unlensed CMB. The lensing operation

T̃ (n̂) = T (n̂ + d(n̂)) (11)

is performed directly in position space (rather than rely-
ing on an approximation to Eq. (11) such as the gradient
approximation). The right-hand side of Eq. (11) is evalu-
ated using cubic interpolation on a high resolution (≈ 0.5
arcmin) map.

NVSS CMB

Mean contribution to the square significance σ2
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FIG. 5: Detection of CMB lensing via the cross power spec-
trum Cφg

" between the reconstructed potential and galaxy
counts. The three 1σ error bars on each bandpower repre-
sent different Monte Carlo methods: WMAP simulations vs
NVSS simulations (left/black), WMAP data vs NVSS simu-
lations (middle/blue), and WMAP simulations vs NVSS data
(right/red). These error bars represent statistical errors only;
the result with systematic errors included will be shown in
Fig. 19.

a nonzero Cφg
" in the simulations for calibration. (Strictly

speaking, the normalization should be a matrix which
couples bands b != b′, but we have neglected the off-
diagonal terms, which are small for our case of large sky
coverage and wide bands.) As we will see in Appendix B,
the normalization Nb is proportional to a cut-sky Fisher
matrix element, which must be computed by Monte Carlo
(unless an approximation is made such as simple fsky

scaling). In addition, Monte Carlo simulations are also
needed to compute the one-point term in Eq. (17).

This concludes our description of the pipeline. We have
not motivated the details in the construction of our lens-
ing estimator Ĉφg

b , but in Appendix B we show that the
estimator is optimal, by proving that it achieves statisti-
cal lower limits on the estimator variance, so that the best
possible power spectrum uncertainties are obtained. This
justifies the combination of ingredients presented here:
inverse signal + noise filtering (steps 5 and 7), keeping
the lensing potential in harmonic space (step 6), and in-
cluding the one-point term in the cross-correlation (step
8); and shows that no further improvements are possible.

B. Results

The result of applying this analysis pipeline to the
WMAP and NVSS datasets is shown in Fig. 5. We em-
phasize that the uncertainties are purely statistical. Sys-
tematic errors will be studied in §V-§VIII, and an up-
dated version of the result shown in §IX, where we also
show that the detection significance with systematic er-

FIG. 6: CMB lensing detection obtained by analyzing Q-band
(left/black error bar in each triple), V-band (middle/blue),
and W-band (right/red) data from WMAP separately, show-
ing consistency of the result between CMB frequencies.

rors included is 3.4σ.

Our error bars were obtained by Monte Carlo, cross-
correlating simulations of WMAP and NVSS. As a con-
sistency check, Fig. 5 shows that nearly identical er-
ror bars are obtained if WMAP simulations are cross-
correlated to the real NVSS data, or vice versa. This
is an important check; if it failed, then we would know
that our simulations were failing to capture a feature of
the datasets which contributes significant uncertainty to
the lensing estimator. In addition, it shows that the
uncertainties only depend on correctness of one of the
simulation pipelines. Suppose, for example, that the
NVSS dataset contains unknown catastrophic systemat-
ics which invalidate our simulations. Because the same
result is obtained by treating NVSS as a black box to
be cross-correlated to WMAP simulations, it is still valid
(provided that WMAP contains no “catastrophic” sys-
tematics!)

As another consistency check, in Fig. 6 we show the
detection that is obtained if each frequency in WMAP is
analyzed separately. No signs of inconsistency are seen,
although we have not attempted to quantify this pre-
cisely: the results obtained from different frequencies are
correlated even though the CMB noise realizations are
independent, because NVSS is identical and so is the un-
derlying CMB realization. For the same reason, we cau-
tion the reader that the three sets of error bars in Fig. 6
cannot be combined in a straightforward way to obtain
an overall result. The best possible way of combining the
data is already shown in Fig. 5: the maps from the three
frequencies are combined into a single CMB map which
is cross-correlated to NVSS.

Preliminary measurement

Q, V and W bands combined
Statistical 1σ errors only evaluated through Sim x 
Sim, Data x Sim or Sim x Data (consistency tests)
... But this result is just a teaser...



Systematics x Systematics 

WMAP NVSS

Astrophysical
•Pt sources
•SZ clusters
•Residual Foregrounds

•(bright) Pt sources 
•Unknown redshift 
distribution
•unknown bias

Instrumental and/or
observational

•Beam uncertainties
•Asymmetric Beam effects

•Declination dependancy
•ringing around bright 
sources

Unknown Bugs, Inconsistencies, etc.

Much less of a tease...



Pt sources & SZ contribution

Unresolved WMAP pt sources might 
appear in NVSS or just be correlated 
with NVSS pt sources ⇒ spurious 

correlations

First To evaluate this signal we 
construct an optimal estimator to 
detect this correlation assuming a 
general ansatz for the bispectra 
(<TTG>) contribution, bl1,l12,l3=fl3 

We do not detect such a pt source 
contribution
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Now that we have determined the most general bis-
pectrum contributed by point source contamination
(Eq. (32)), how do we construct the point source estima-
tor? In Appendix B, we show that the optimal estimator
for this bispectrum is constructed in a way which is anal-
ogous to the lensing estimator Ĉφg

b (or the curl null test

Ĉψg
b ). First, we define a field s̃ which is quadratic in the

CMB:
∑

#m

s̃#mY#m(x) = α(x)2 (33)

where α(x) was defined previously in Eq. (15). Then we
cross-correlate s̃ to galaxy counts, subtracting the one-
point term as usual:

Ĉsg
b =

1

Nb

∑

#∈b
−#≤m≤#

(s̃#m − 〈s̃#m〉)∗(g̃#m) (34)

This defines the optimal estimator Ĉsg
b for the point

source bispectrum (Eq. (32)), with the galaxy multipole
"3 binned into a bandpower b.

Intuitively, the field s̃ can be thought of as a “quadratic
reconstruction” of CMB point source power, in the same
sense that φ̃ is a quadratic reconstruction of the CMB
lensing potential. Our estimator Ĉsg

b is obtained by cross-
correlating s̃ to the filtered galaxy field g̃: we are only
interested in point source power which is correlated to
NVSS. By using Ĉsg

b to directly estimate the bispectrum
due to point sources from data, we can assign systematic
errors to the lensing bandpower Ĉφg

b which do not depend
on the details of the point source model, as we will now
see.

B. Results

In Fig. 13, we show the result of applying the point
source estimator Ĉsg

b , constructed in the previous section,
to the WMAP and NVSS datasets. The χ2 to zero is
11.7 with 12 degrees of freedom. Therefore, no evidence
for point source contamination is seen. This lets us put
strong constraints on the systematic error in lensing due
to point sources: the point source contribution must be
small enough to be hidden in Fig. 13, even though the
estimator Ĉsg

b is optimized for point sources. The rest of
this subsection is devoted to assigning systematic errors
based on this observation.

We find that for distinct bands b $= b′, the point source
and lensing estimators in band b are uncorrelated to the
estimators in band b′. This is unsurprising; it follows
from the definitions that the bands are independent for
all-sky coverage and homogeneous noise, so that the only
correlation is due to inhomogeneities. Since we have large
sky coverage and wide bands, the correlations should be
small. We will treat each band independently, for con-
sistency with our point source model, which allows an
arbitrary " dependence in the point source amplitude

FIG. 13: Point source estimator bCsg
b applied to the WMAP

and NVSS datasets, showing no evidence for CMB point
source power which is correlated to NVSS. The error bars
were obtained from Monte Carlo WMAP+NVSS simulations
without point sources.

FIG. 14: Histogrammed 1.4 GHz flux distribution in NVSS,
with the fitting function in Eq. (35) shown for comparison.

(Eq. (32)). We will illustrate our method in detail for
the band b = ("min, "max) = (20, 40).

First, we use simulations to study the effect of point
sources on the estimators Ĉφg

b , Ĉsg
b , using the following

fiducial point source model. (We will show shortly that
the final result does not depend on the details of the point
source model.) Each simulated NVSS galaxy is assigned
a randomly generated flux S1.4GHz between 2 mJy and 1
Jy, drawn from the distribution

dN

dS
∝

S−1.8

1 + (S/200 mJy)1.1
(35)

This distribution was obtained empirically from the flux
distribution seen in the real NVSS data (Fig. 14). We

Second we use this measurement to 
inform Specific simulations to 
evaluate the contribution to our 
lensing estimator

This contribution will be the dominant 
since it accounts for about ~27% of the 
statistical error budget

Note that this detection also includes 
SZ clusters since they are not resolved 
by wmap beams
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FIG. 15: Ensemble of simulations in the fiducial point source
model (Eqs. (35), (36)) with varying point source amplitude
Λ. For each realization, we show the observed point source
level bCsg

b in the band b = (!min, !max) = (20, 40) and the

change in the lensing estimator ∆ bCφg
b due to the point source

contribution. The dotted vertical line shows the point source
level in this band estimated from the real WMAP + NVSS
data; the smaller vertical error bar shows the mean and RMS
∆ bCφg

b among simulations whose observed point source level
matches the measured value.

then assign the flux

Sν = Λ
( ν

1.4 GHz

)α
S1.4GHz (36)

at each WMAP frequency ν, where Λ is a constant which
will be varied to simulate different overall levels of point
source contamination. Following [76], we take spectral
index α = 0 in our fiducial point source model.

In Fig. 15, we show the values of the point source es-
timator Ĉsg

b obtained in an ensemble of simulations with

varying point source amplitude Λ, and the change ∆Ĉφg
b

in the lensing bandpower which is due to the point source
contribution. (Note that we do not show the true point
source amplitude Λ for each simulation; we show the ob-
served point source level Ĉsg

b , estimated the same way as
in the data.)

We find that the results can be fit by treating ∆Ĉφg
b

as a Gaussian variable whose mean and variance depend
on Ĉsg

b :

〈∆Ĉφg
b 〉 = −αĈsg

b Var(∆Ĉφg
b ) = β2+γ2(Ĉsg

b )2 (37)

where α = 0.38 µK−2, β = 1.64 × 10−7, γ = 0.21 µK−2.
Based on this picture, how can we assign systematic

errors due to point sources? Consider the distribution
of ∆Ĉφg

b values obtained by considering only realizations

whose observed point source level Ĉsg
b agrees with the

value (= 1.3×10−7 µK2) observed in the data (indicated

by the dotted vertical line in Fig. 15.) Note that this
distribution includes realizations with a range of values
for the true point source amplitude Λ; we are effectively
averaging over point source levels allowed by the observed
value of Ĉsg

b (i.e. the posterior distribution). By Eq. (37),
we get a Gaussian distribution with parameters:

∆Ĉφg
b = (−0.5 ± 1.7) × 10−7 (38)

indicated by the vertical error bar in Fig. 15.
We have now arrived at an distribution (Eq. (38)) for

the change in ∆Ĉφg which is due to the point source
contribution. The central value of this distribution is
nonzero; point source contamination makes a negative
contribution on average, as can be seen in Fig. 15. To be
conservative, we will not shift our estimate for Ĉφg in the
positive direction by the central value (this would allow
point sources to “help” the lensing detection), but will
include the shift as part of the systematic error. Thus we
would quote the systematic error in Cφg

b as: ±2.2×10−7.
As we have described it, this procedure appears to de-

pend on the fiducial point source model (Eqs. (35), (36)).
However, we find that the final systematic error esti-
mate in each band is relatively robust even under drastic
changes to the model. We tried the following extreme
cases: assigning constant flux to each source rather than
using Eq. (35), taking spectral index α = ±1 in Eq. (36)
rather than α = 0, and finally simulating point sources
which are merely correlated to NVSS rather than appear-
ing as NVSS objects. All of these models give similar
results to within a factor ∼ 2. (Note that our point
source estimator in Eq. (34) is actually optimized for
point sources with a blackbody spectral distribution, but
these results show that we obtain robust systematic error
constraints across a reasonable range of spectral indices.)

Repeating this procedure for every % band, we obtain
a systematic error estimate for each lensing bandpower
Ĉφg

b . Since we have considered several point source mod-
els, we assign the systematic error for each band using the
model which gives the largest error in that band. The re-
sults are shown in the “Resolved point source” column in
Tab. I in §IX. We find a systematic error which is smaller
than the statistical error in all bands, but is the largest
overall source of systematic error.

The robustness of our error estimate to the point
source model is consistent with our discussion in the
previous subsection: regardless of the details of the
model, the contamination to the lensing estimator is pro-
portional to the level of the point source bispectrum
(Eq. (32)) contributed by point sources. By directly esti-
mating the bispectrum, we can obtain a relatively model-
independent constraint on the systematic error due to
point sources. This would not be possible if a simpler
statistic were used, such as the cross power spectrum
CTg

$ .
The procedure we have described is similar to the

Fisher matrix based method that is frequently used to
marginalize point sources when estimating primordial
non-Gaussianity from the CMB bispectrum [59], but dif-
fers in several details. First, we use a general form of the

20≤ !≤ 40



Frequency dependancy
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FIG. 5: Detection of CMB lensing via the cross power spec-
trum Cφg

" between the reconstructed potential and galaxy
counts. The three 1σ error bars on each bandpower repre-
sent different Monte Carlo methods: WMAP simulations vs
NVSS simulations (left/black), WMAP data vs NVSS simu-
lations (middle/blue), and WMAP simulations vs NVSS data
(right/red). These error bars represent statistical errors only;
the result with systematic errors included will be shown in
Fig. 19.

a nonzero Cφg
" in the simulations for calibration. (Strictly

speaking, the normalization should be a matrix which
couples bands b != b′, but we have neglected the off-
diagonal terms, which are small for our case of large sky
coverage and wide bands.) As we will see in Appendix B,
the normalization Nb is proportional to a cut-sky Fisher
matrix element, which must be computed by Monte Carlo
(unless an approximation is made such as simple fsky

scaling). In addition, Monte Carlo simulations are also
needed to compute the one-point term in Eq. (17).

This concludes our description of the pipeline. We have
not motivated the details in the construction of our lens-
ing estimator Ĉφg

b , but in Appendix B we show that the
estimator is optimal, by proving that it achieves statisti-
cal lower limits on the estimator variance, so that the best
possible power spectrum uncertainties are obtained. This
justifies the combination of ingredients presented here:
inverse signal + noise filtering (steps 5 and 7), keeping
the lensing potential in harmonic space (step 6), and in-
cluding the one-point term in the cross-correlation (step
8); and shows that no further improvements are possible.

B. Results

The result of applying this analysis pipeline to the
WMAP and NVSS datasets is shown in Fig. 5. We em-
phasize that the uncertainties are purely statistical. Sys-
tematic errors will be studied in §V-§VIII, and an up-
dated version of the result shown in §IX, where we also
show that the detection significance with systematic er-

FIG. 6: CMB lensing detection obtained by analyzing Q-band
(left/black error bar in each triple), V-band (middle/blue),
and W-band (right/red) data from WMAP separately, show-
ing consistency of the result between CMB frequencies.

rors included is 3.4σ.

Our error bars were obtained by Monte Carlo, cross-
correlating simulations of WMAP and NVSS. As a con-
sistency check, Fig. 5 shows that nearly identical er-
ror bars are obtained if WMAP simulations are cross-
correlated to the real NVSS data, or vice versa. This
is an important check; if it failed, then we would know
that our simulations were failing to capture a feature of
the datasets which contributes significant uncertainty to
the lensing estimator. In addition, it shows that the
uncertainties only depend on correctness of one of the
simulation pipelines. Suppose, for example, that the
NVSS dataset contains unknown catastrophic systemat-
ics which invalidate our simulations. Because the same
result is obtained by treating NVSS as a black box to
be cross-correlated to WMAP simulations, it is still valid
(provided that WMAP contains no “catastrophic” sys-
tematics!)

As another consistency check, in Fig. 6 we show the
detection that is obtained if each frequency in WMAP is
analyzed separately. No signs of inconsistency are seen,
although we have not attempted to quantify this pre-
cisely: the results obtained from different frequencies are
correlated even though the CMB noise realizations are
independent, because NVSS is identical and so is the un-
derlying CMB realization. For the same reason, we cau-
tion the reader that the three sets of error bars in Fig. 6
cannot be combined in a straightforward way to obtain
an overall result. The best possible way of combining the
data is already shown in Fig. 5: the maps from the three
frequencies are combined into a single CMB map which
is cross-correlated to NVSS.

W (94 GHz) 
V (61 GHz)
Q (41 Ghz)

Strong test for any astrophysical contamination
no departure from thermal spectrum 
But we still marginalize over foreground templates (free-free 
and dust) which add ~15% to the statistical error budget



NVSS systematics - I
Survey depth is a function of 
declination
This creates spurious large scale 
power
We thus marginalize over azimuthal 
mode in equatorial coordinates 
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FIG. 8: Maximum likelihood NVSS galaxy power spectrum,
calculated without (top panel) and with (bottom panel)
marginalization of m = 0 modes in equatorial coordinates.
In the bottom panel, fiducial spectra are shown (both for
bg = 1.7) from the model for dN/dz by [69] (dotted line) and
our fit in Eq. 21 (dashed line).

FIG. 9: NVSS galaxy overdensity field in equatorial coordi-
nates, low-pass filtered to multipoles ! ≤ 10, showing visible
azimuthal striping.

sitivity due to marginalizing m = 0 modes is already
included in the statistical errors; it is not necessary to
assign systematic errors separately.

After including this marginalization in the analysis, the
NVSS galaxy power spectrum shown in the bottom panel
of Fig. 8 is obtained, showing reasonable agreement with
our fiducial Cgg

! . Marginalizing m = 0 modes produces a
large shift in the lowest bandpower and a much smaller
shift in higher bands. In Fig. 10 (top panel), we show the
shift in each bandpower when m = 0 modes are marginal-

FIG. 10: Change ∆Cgg
! in maximum likelihood galaxy power

spectrum, when NVSS is analyzed with m = 0 marginaliza-
tion vs no marginalization (top panel) or m = 0, 1 marginal-
ization vs m = 0 marginalization (bottom panel) in equatorial
coordinates. The error bars represent the RMS shift obtained
when Monte Carlo simulations are analyzed in the same way.

ized; the error bars show the RMS shift obtained when
the same marginalization is performed in simulations. It
is seen that the shift is statistically significant not only
in the lowest ! band, but all the way to ! ∼ 100. We
conclude that declination gradients in NVSS are an im-
portant systematic on a range of scales and should always
be marginalized in cosmological studies.

Has marginalizing m = 0 completely removed the sys-
tematic? To answer this, we tried marginalizing the
m = 1 Fourier mode in the azimuthal coordinate ϕ, in ad-
dition to the m = 0 mode. In this case, we find (Fig. 10,
bottom panel) that the shift in Cgg

! bandpowers is con-
sistent with simulations. (There is a possible glitch at
! ∼ 200, but this is outside the range of angular scales
which contribute to the lensing detection.) Therefore,
we believe that marginalizing all modes with m = 0 in
equatorial coordinates completely removes the system-
atic; there is no evidence that the contamination extends
to higher m.

In addition to declination gradients, there is another
NVSS systematic which has been relevant for cosmolog-
ical studies: multicomponent sources [70, 71]. Radio
galaxies whose angular size is sufficiently large to be re-
solved by the 45-arcsec NVSS beam will appear as mul-
tiple objects in the NVSS catalog. This can contribute
extra power to the auto spectrum Cgg

! , at a level which is
a few percent of the shot noise. At worst, this could in-
crease the variance of our cross-correlation estimator Ĉφg

b
by a few percent without biasing the estimator. Further-
more, as can be seen in Fig. 8 (bottom panel), we see

NVSS systematics: bright sources

NVSS maps show “ringing” near
bright sources

We treat this by masking ∼ 2000
sources > 1 Jy

Source mask included in statistical
errors

We include the mask in all results,
but neither C gg

! nor Cφg
! changes

significantly.

NVSS raw map: 2◦ × 2◦

Ringing around bright sources

We thus mask the bright sources 
(>1Jy) and 1 deg. disk around them

Raw 2ox20 field



NVSS systematics - II

Poorly known z distribution and bias of NVSS objects
Existing models do not fit the auto-power spectrum so well (e.g. 
pietrobon 06)
We proposed a “lopsided gaussian” which is a better fit (with bg=1.7)

But not critical for measurements since the CMB lensing kernel is 
broad
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FIG. 8: Maximum likelihood NVSS galaxy power spectrum,
calculated without (top panel) and with (bottom panel)
marginalization of m = 0 modes in equatorial coordinates.
In the bottom panel, fiducial spectra are shown (both for
bg = 1.7) from the model for dN/dz by [69] (dotted line) and
our fit in Eq. 21 (dashed line).

FIG. 9: NVSS galaxy overdensity field in equatorial coordi-
nates, low-pass filtered to multipoles ! ≤ 10, showing visible
azimuthal striping.

sitivity due to marginalizing m = 0 modes is already
included in the statistical errors; it is not necessary to
assign systematic errors separately.

After including this marginalization in the analysis, the
NVSS galaxy power spectrum shown in the bottom panel
of Fig. 8 is obtained, showing reasonable agreement with
our fiducial Cgg

! . Marginalizing m = 0 modes produces a
large shift in the lowest bandpower and a much smaller
shift in higher bands. In Fig. 10 (top panel), we show the
shift in each bandpower when m = 0 modes are marginal-

FIG. 10: Change ∆Cgg
! in maximum likelihood galaxy power

spectrum, when NVSS is analyzed with m = 0 marginaliza-
tion vs no marginalization (top panel) or m = 0, 1 marginal-
ization vs m = 0 marginalization (bottom panel) in equatorial
coordinates. The error bars represent the RMS shift obtained
when Monte Carlo simulations are analyzed in the same way.

ized; the error bars show the RMS shift obtained when
the same marginalization is performed in simulations. It
is seen that the shift is statistically significant not only
in the lowest ! band, but all the way to ! ∼ 100. We
conclude that declination gradients in NVSS are an im-
portant systematic on a range of scales and should always
be marginalized in cosmological studies.

Has marginalizing m = 0 completely removed the sys-
tematic? To answer this, we tried marginalizing the
m = 1 Fourier mode in the azimuthal coordinate ϕ, in ad-
dition to the m = 0 mode. In this case, we find (Fig. 10,
bottom panel) that the shift in Cgg

! bandpowers is con-
sistent with simulations. (There is a possible glitch at
! ∼ 200, but this is outside the range of angular scales
which contribute to the lensing detection.) Therefore,
we believe that marginalizing all modes with m = 0 in
equatorial coordinates completely removes the system-
atic; there is no evidence that the contamination extends
to higher m.

In addition to declination gradients, there is another
NVSS systematic which has been relevant for cosmolog-
ical studies: multicomponent sources [70, 71]. Radio
galaxies whose angular size is sufficiently large to be re-
solved by the 45-arcsec NVSS beam will appear as mul-
tiple objects in the NVSS catalog. This can contribute
extra power to the auto spectrum Cgg

! , at a level which is
a few percent of the shot noise. At worst, this could in-
crease the variance of our cross-correlation estimator Ĉφg

b
by a few percent without biasing the estimator. Further-
more, as can be seen in Fig. 8 (bottom panel), we see

NVSS systematics: modeling uncertainty

NVSS redshift distribution is not
known very well; we found that
existing models, e.g. Gaussian
(Pietrobon 2006)

dN

dz
∝ exp

(
−(z − 1.1)2

2(0.8)2

)

did not fit C gg
! well.

However a small tweak, e.g. “lopsided Gaussian”:

dN

dz
∝





exp

(
− (z−1.1)2

2(0.8)2

)
(z < 1.1)

exp
(
− (z−1.1)2

2(0.3)2

)
(z > 1.1)

results in a good fit. (Exception: ! ≤ 10.)



WMAP systematics
WMAP temperature maps constitute a clean dataset: white noise 
and foregrounds... (and cmb...)

we still need to worry about asymetric beam effects

they are small because of instrumental design (ellipticity>0.8) 
and scanning strategy (less than 1% on Cltt for V and W), they can 
still mimic lensing (shearing cold or hot spots)

We use the formalism developed in Hinshaw et al. 06 to perform 
exact simulations of this effect

Add about ~4% to the statistical error budget
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FIG. 11: Result of convolving a single noiseless CMB realiza-
tion with the WMAP V1 beam, including beam asymmetry.
We have shown the output map separated into contributions
from different beam multipoles: s = 0 (isotropic component,
top left), s = 1 (top right), s = 2 (bottom left), and s = 3
(bottom right). Each map has been scaled independently for
visibility; the RMS temperature in the s = 0, . . . , 3 maps is 88,
0.4, 1.0, 0.04 µK. The convolution with the s > 0 multipoles is
scan dependent and shows alignments with the ecliptic poles
reflecting the WMAP scan strategy.

higher-s multipoles have been estimated by the WMAP
team and represent corrections to the azimuthally sym-
metric approximation. In Appendix D, we show how to
incorporate the higher multipoles into the simulation di-
rection of the pipeline, generalizing the convolution in
Eq. (12). In contrast to the s = 0 multipoles, convolving
with the higher multipoles depends on the scan strat-
egy; our method incorporates the details of the WMAP
scan based on full timestream pointing. In Fig. 11, we
illustrate our simulation procedure for a single noiseless
realization in V -band, showing the contribution of the
s = 0, . . . 3 multipoles to the beam-convolved map.

It would be very difficult to incorporate asymmetric
beams into the analysis direction of the pipeline, so our
approach is to treat beam asymmetry as a source of sys-
tematic error. We assign each lensing bandpower Cφg

b a
systematic error given by the Monte Carlo RMS change
in the bandpower when the same WMAP + NVSS sim-
ulation is analyzed with and without including beam
asymmetry in the simulation pipeline. We find that the
systematic error in each band is small compared to the
statistical error. The result is shown, as part of a larger
systematic error budget, in the “Beam asymmetry” col-
umn of Tab. I in §IX.

B. Beam uncertainty

We have shown that systematic errors from beam
asymmetry are small, so that the beam may be treated
as the simple convolution in Eq. (12) to a good approx-
imation. This leaves only one remaining beam-related
source of systematic error: measurement uncertainty in
the beam transfer function B".

We model the beam transfer function uncertainty fol-
lowing [46, §A.2]. The beam covariance matrix is domi-
nated by a small number of modes. We SVD decompose

FIG. 12: Foreground templates used in this paper, shown
with Kp0 mask (§II) applied. Left panel: Dust template,
based on [74] with frequency dependence given by Eq. (23).
Right panel: Free-free template, based on [75, 76] with fre-
quency dependence given by Eq. (24). The masked RMS of
the templates in V-band is 6.4 µK and 4.8 µK respectively.

the matrix for each DA and keep only the 10 most signif-
icant modes. Then we construct realizations of the beam
transfer function using

B" = B(0)
"

(

1 +
∑

i

uim
i
"

)

(22)

where B(0) is the standard beam transfer function, ui

are unit-variance normal random deviates, and mi
" are

the beam covariance modes.
Armed with this simulation procedure, we assign sys-

tematic errors by computing the RMS change in each
bandpower when the same simulation is analyzed with
and without simulated beam uncertainty. We find that
the systematic errors are extremely small.

C. Galactic foregrounds

In addition to the CMB, the sky at microwave fre-
quencies contains other foreground signals which must
be considered as a source of systematic error in lensing.
We will find that the most important of these are point
sources and the thermal Sunyaev-Zeldovich effect, which
will be discussed in §VII and §VIII respectively. The
other relevant microwave foregrounds are Galactic in ori-
gin: dust, free-free emission, and synchrotron radiation.
For descriptions of the foreground components, we refer
the reader to [76].

Following [46], we will model dust contamination
by adding a template derived from “Model 8” from
Finkbeiner et al [74], evaluated at 94 GHz and scaling
to frequency ν by:

TA(ν) =
( ν

94 GHz

)2.0
TA(94 GHz) (23)

where TA denotes antenna temperature. The dust tem-
plate is shown in Fig. 12, left panel.

When we cross-correlate simulations of WMAP and
NVSS, we find that including the dust template in the
WMAP simulation results in a very small change in the
estimated lensing signal. We take the Monte Carlo RMS
average of the change in each bandpower when the same
pair of simulations is analyzed with and without the tem-
plate as a systematic error estimate, shown in the “Dust”
column of Tab. I in §IX.

s=0
σ=88μK

e.g. V1 beam

s=2
σ=1.μK

s=1
σ=0.4μK

s=3
σ=0.04μK
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Beam Galactic Point source + SZ

(!min, !max) Statistical Asymmetry Uncertainty Total Dust Free-free Total Unresolved Resolved Total Stat + systematic

(2, 20) 17.4 ± 22.4 ±0.9 ±0.3 ±1.2 ±0.4 ±1.4 ±3.6 ±10.9 ±0.5 ±11.4 17.4 ± 27.4

(20, 40) 33.2 ± 10.5 ±0.2 ±0.1 ±0.3 ±0.2 ±0.5 ±1.4 ±4.9 ±1.0 ±5.9 33.2 ± 13.0

(40, 60) 15.9 ± 7.8 ±0.1 ±0.1 ±0.2 ±0.2 ±0.3 ±1.0 ±2.8 ±1.5 ±4.3 15.9 ± 9.3

(60, 80) 10.1 ± 6.3 ±0.1 ±0.1 ±0.2 ±0.1 ±0.3 ±0.8 ±2.0 ±0.3 ±2.3 10.1 ± 7.0

(80, 100) 5.1 ± 5.8 ±0.1 ±0.1 ±0.2 ±0.1 ±0.3 ±0.8 ±1.1 ±0.2 ±1.3 5.1 ± 6.0

(100, 130) 8.3 ± 4.3 ±0.1 < 0.1 ±0.2 ±0.1 ±0.2 ±0.6 ±0.6 ±0.2 ±0.8 8.3 ± 4.4

(130, 200) 1.6 ± 2.5 < 0.1 < 0.1 ±0.1 ±0.1 ±0.1 ±0.4 ±0.3 ±0.1 ±0.4 1.6 ± 2.6

(200, 300) −1.9 ± 2.2 < 0.1 < 0.1 ±0.1 ±0.1 ±0.1 ±0.4 ±0.3 ±0.1 ±0.4 −1.9 ± 2.3

TABLE I: Final estimated Cφg
b bandpowers, together with statistical uncertainties and systematic errors from point sources.

All entries in the table are !2Cφg
" in multiples of 10−7.

used in Monte Carlo simulations, not on the details of
the modeling. We have checked these fiducial spectra
in two ways: first, by direct comparison with the mea-
sured NVSS power spectrum (Fig. 8); we have omitted
the comparison for the WMAP power spectrum since our
fiducial cosmology is the WMAP+ALL cosmology from
[2]. Second, we have shown that consistent statistical
errors are obtained by cross-correlating simulations with
data (Fig. 5). The fiducial model is also used to con-
struct the (S + N)−1 filtering operation, but in this case
using incorrect power spectra merely makes our estima-
tor slightly suboptimal and does not significantly affect
the detection.

The statement that our result only depends on the
fiducial spectra CTT

! , Cgg
! , not on the details of the model,

would not be true if we were attempting to translate our
measurement of Cφg

! into a constraint on cosmological pa-
rameters. There are several obstacles to doing so which
we plan to address in future work. First, Cφg

! depends on
cosmology but is also proportional to the NVSS galaxy
bias bg, which must be marginalized. One possible ap-
proach is to only consider quantities such as

Cφg
! /

√
Cgg

! (46)

which should be independent of galaxy bias (ignoring
subtleties like redshift-dependent bias). Second, the
NVSS redshift distribution dN/dz is uncertain and must
also be marginalized over some reasonable range. We
note that the auto power spectrum Cgg

! , which appears
in Eq. (46), is more sensitive to changes in dN/dz than
the cross spectrum Cφg

! . A conservative approach to
marginalizing over cosmological parameters as well as
redshift and bias uncertainties would be the Markov
chain Monte-Carlo (MCMC) method (compare [94]) ap-
plied to both Cφg

! and Cgg
! constraints.

Finally, we have not considered the impact of magni-
fication bias: the observed NVSS galaxy field is altered
by the magnifying and demagnifying effect of gravita-
tional lenses between the source galaxies and observer
[95, 96]. One can think of this as adding terms to the
galaxy field g(n̂) which depend on the matter distribu-

tion at intermediate redshifts along the line of sight. This
introduces additional terms in Cφg

! which are not in-
cluded in our fiducial spectrum, and have been shown
to be significant when deducing cosmological constraints
from ISW measurements [97]. In a magnified region, the
galaxy surface density g(n̂) receives a negative contribu-
tion (since magnification spreads a fixed number count
over a larger area) and a positive contribution (since mag-
nification brings new galaxies above the flux threshold of
the survey), so the effect can have either sign. Note that
magnification bias affects the fiducial Cφg

! in a given cos-

mology, but does not affect our measured values of Cφg
!

or the statistical significance of the detection.

We have constructed an estimator for the lensing
cross-correlation Cφg

! which is probably optimal (Appen-
dices A, B). The estimator is defined in three steps.
First, we filter the WMAP and NVSS datasets by their
inverse signal + noise covariance, thus “distilling” the
datasets to harmonic-space maps ã!m, g̃!m. Second, we
perform lens reconstruction on the filtered WMAP data
ã!m, producing a noisy reconstruction φ̃!m of the CMB
lensing potential which is quadratic in the data. Third,
we cross-correlate φ̃ and g̃, subtracting the one-point
term.

Subtracting the one-point term is necessary to make
the estimator optimal, and also eliminates systematic
bias from resolved point sources (§VII C), although a
systematic calibration error may remain. Since the one-
point subtraction is trivial to implement in a Monte Carlo
pipeline, we recommend that it always be used. The
other feature making our estimator optimal is full-blown
(S + N)−1 filtering (Appendix A). Here, it is unclear
whether the optimal filter is practically necessary; it may
be possible to construct a simpler filter which approxi-
mates (S +N)−1 and produces near-optimal estimates in
practice. In any case, an optimal implementation is an
invaluable tool when studying candidates for such a filter,
since the results can be directly compared to optimal.

We have studied potential sources of systematic er-
ror from known NVSS systematics (§V), WMAP beam
effects (§VI A-§VI B) Galactic microwave foregrounds
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over the relevant range of angular scales.
We can incorporate this scale dependence into the

analysis by considering a bispectrum of the form

b!1,!2,!3 ∝ !−0.6
1 !−0.6

2 F!3 (42)

To quantify the effect of scale dependence on the lensing
estimator, we compute the correlation between this shape
and the point source shape (Eq. (32)), using the Fisher
matrix formalism [93]. According to this, the Fisher ma-

trix element between two bispectra b(α)
!1!2!3

, b(β)
!1!2!3

is de-
fined by

Fαβ =
1

2

∑

!1!2!3

(G!1!2!3)
2b(α)

!1!2!3
b(β)
!1!2!3

(CTT
!1

+ NTT
!1

)(CTT
!2

+ NTT
!2

)(Cgg
!3

+ Ngg
!3

)

(43)
To a good approximation, when bispectra are estimated
from data, the covariance matrix is given by:

Cov(b(α), b(β)) = f−1
skyF

−1
αβ (44)

When we compute the Fisher matrix for the point source
(Eq. (32)) and scale-dependent (Eq. (42)) shapes at
WMAP and NVSS noise levels, we find a correlation co-
efficient ∼ 0.95. At this level of correlation, the point
source shape and SZ shape can not be distinguished to
1σ, unless a 6σ detection of the point source shape can
also be made. Since we do not find any evidence for point
source contamination in the data (Fig. 15), we conclude
that the difference between the point source and SZ bis-
pectra should be negligible in the context of the WMAP
and NVSS data sets.

As an additional check, we tried modifying our point
source simulations by giving each point source an a!m ∝
!−0.6 profile, and SZ frequency dependence (Eq. (40)),
including the negative sign. This crude procedure is of
course not an accurate method for simulating SZ in de-
tail, but does incorporate two qualitative features which
distinguish SZ from point sources at WMAP resolution:
the scale dependence (Eq. 41) and frequency dependence
(Eq. 40). We find that the systematic errors in lensing
(obtained from Monte Carlo simulations as described in
§VII) are within the range of point source models previ-
ously considered, showing that neither of these deviations
from pure point source behavior significantly affects our
method.

Finally, there is one assumption in our point source
model which we can check explicitly for the case of SZ:
that clustering is unimportant on scales of l # 400 (see
Eq. 30). This can be seen directly from Fig. 18; the
clustering term is dominated by the Poisson term by an
order of magnitude.

IX. FINAL RESULT AND DISCUSSION

In Tab. I and Fig. 19, we show our final result: es-
timated Cφg

! bandpowers, together with statistical and
systematic uncertainties. Our procedure for combining
errors is as follows. We combine the errors from beam

FIG. 19: Final result from Tab. I, showing statistical errors
alone (blue/inner error bars) and statistical + systematic er-
rors (red/outer).

asymmetry (§VI A) and beam uncertainty (§VI B) into
a “total beam” error assuming that the two are com-
pletely correlated. We obtain a “total Galactic” error
from Galactic CMB foregrounds by combining the dust
and free-free systematic errors (§VI C) assuming corre-
lated errors, and double the result to account for syn-
chrotron (where no template is available on the relevant
angular scales). We obtain a “total point source” error
by combining the errors from unresolved and resolved
sources, assuming that the two are correlated. (As we
have shown in §VIII, the “point source” errors apply to
the total systematic error from CMB point sources and
the thermal SZ effect.) We then obtain our final result
by combining the statistical, total beam, total Galactic,
and point source errors, assuming that the four are un-
correlated.

What is the total statistical significance of our detec-
tion? To assess this, we combine our bandpower esti-
mates into a single estimator Ĉ, giving each bandpower a
weight proportional to its fiducial expectation value Cφg

b,fid

(not the measured value in Tab. I) and inversely propor-
tional to its total (statistical + systematic) variance:

Ĉ =

∑
b

(
Cφg

b,fid/Var(Ĉφg
b )

)
Ĉφg

b
∑

b(C
φg
b,fid)2/Var(Ĉφg

b )
(45)

where the denominator has been included to normalize
〈Ĉ〉 = 1 in the fiducial model. We find Ĉ = 1.15 ± 0.34,
i.e. a 3.4σ detection.

Throughout this paper, we have assumed a fiducial
cosmology, NVSS redshift distribution, and galaxy bias
when computing statistical errors by Monte Carlo simu-
lation, and when constructing the (S+N)−1 filters in the
analysis pipeline. To what extent do our results depend
on the fiducial model? Our Cφg

! bandpowers and error
bars depend only on the fiducial power spectra CTT

! , Cgg
!

Final measurement

Q, V and W combined
All systematics are combined 
Results are robust wrt systematic effects
Combined in one single band power:

C = 1.15 ± 0.34, i.e. a 3.4σ signal detection

Stat. + Syst.

 Stat.



Conclusions
We used wmap 3yr data and NVSS to investigate the 
signature of gravitational lensing in the CMB

After a detailed study of systematic effects (Pt sources, SZ, 
foregrounds, beam effects...) we report a 3.4σ “detection”

This signal is at the expected level given the currently 
favored ΛCDM model

We are currently extending this work to study 
the cosmological implications (σ8, Ωm, ...)
the detailed SZ/point sources interplay

This is just the beginning
WMAP will not deliver much more
ACT/SPT (see David’s talk) and PLANCK will bring CMB 
lensing to another level (60 σ signal for planck alone..) 
and will allow unique science to be done

Thanks Bernard!



fin


