

Cosmic shear analysis of archival HST/ACS data

Tim Schrabback¹

Patrick Simon^{2,1} Thomas Erben¹ Peter Schneider¹ Jan Hartlap¹ Catherine Heymans³ Phil Marshall^{4,5} Chris Fassnacht⁶ Eric Morganson⁴ Marusa Bradac^{4,5} Hendrik Hildebrandt¹ Marco Hetterscheidt¹ Joan-Marc Miralles^{7,1} Tim Eifler¹ Jörg Dietrich⁸ Matteo Maturi⁹ Robert Fosbury¹⁰ Wolfram Freudling¹⁰ Norbert Pirzkal^{10,11}

¹AlfA Bonn
 ²IfA Edinburgh
 ³UBC Vancouver
 ⁴KIPAC Stanford
 ⁵UC Santa Barbara
 ⁶UC Davis
 ⁷ON Rio de Janeiro
 ⁸ESO Garching
 ⁹ITA Heidelberg
 ¹⁰ST-ECF Garching
 ¹¹STScI Baltimore

XXIIIrd IAP Colloquium, Paris, July 2nd, 2007

Outline

- Data
- Data reduction
- 2 PSF correction
 - KSB implementation
 - PSF variations
 - PSF correction scheme
- 3 Pilot study
 - Dithering
 - E/B-mode decomposition
 - Cosmological parameters from GEMS
- Ongoing work
 - CDFS compared to ray-tracing
 - A901/A902
 - COSMOS

Data Data reduction

Data from the ACS archive

Pilot feasibility study: Schrabback et al. (2007): A&A 468

- ACS Parallel Survey (early): 0.16°2 in i775: 59 fields, inhomogeneous
- GEMS+GOODS/CDFS: 0.22^{o2} in V₆₀₆: 28' × 28' mosaic. Independent analysis by Heymans et al. (2005)

Processing the archive (work in progress)

- A901/A902 Field (STAGES): $0.25^{\circ 2}$ in V_{606} : $30' \times 30'$ mosaic.
- **COSMOS**: 1.64°² in i_{814} : 77' × 77' mosaic. Independent analysis by Massey et al. (2007)
- Extended ACS Parallel Survey: $1.22^{\circ 2}$ in V_{606} , r_{625} , i_{775} , or i_{814} : 440 fields, 69% parallel, 31% other (z < 0.07 or z > 1.2), $t_{exp} \ge 1.2$ ks. Joint forces with HAGGLeS \Rightarrow P. Marshall's talk on Wednesday.

Data Data reduction

Data reduction

Use MultiDrizzle for cosmic ray rejection, distortion correction, coaddition

Our upgrades:

- Optimised sky subtraction (bias anomaly)
- Robust shift refinement
- Improved bad pixel masks:
 - Warm pixels
 - Variable bias structures
 - Residual in median image
- Optimal weighting of pixels and frames
- RMS map with proper treatment of noise correlations
- WCS correction
- Efficient, partially automated masking over the Internet

KSB implementation PSF variations PSF correction scheme

Shape measurement+PSF correction

• Erben et al. (2001) KSB+ implementation

(Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998)

• Modifications for space-based data:

- Sub-pixel interpolation
- Measure stellar quantities as function of r_g (Hoekstra et al. 1998; Heymans et al. 2005)
- Integrate stellar images to 4.5*r*^{*}_{FLUX} (PSF wings)
- Tested on STEP simulations: ⇒
 Accuracy sufficient for ACS data

STEP: Talk by K. Kuijken at 15:30

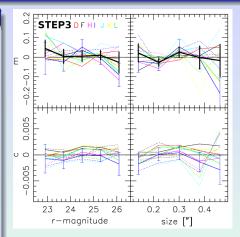


Figure: Calibration bias *m* and PSF residuals *c* in the TS analysis of the ACS **STEP3** (spaceSTEP) image simulations. Simulations by W. High, R. Massey, and J. Rhodes.

KSB implementation PSF variations PSF correction scheme

PSF anisotropy: size dependence

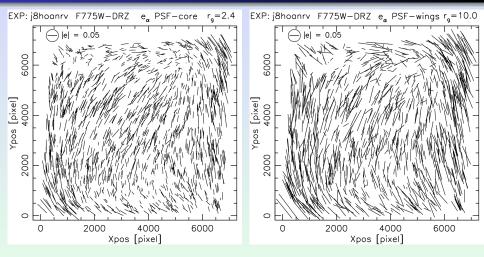
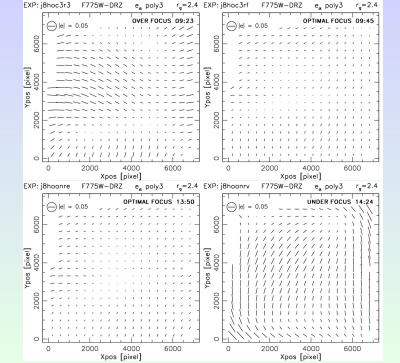



Figure: PSF core for the field j8hoanrv.

Figure: PSF wings for the field j8hoanrv.

Tim Schrabback Cosmi

Cosmic shear analysis of archival HST/ACS data

PSF correction scheme

- Few stars in galaxy fields (≈ 10) ⇒ No polynomial interpolation + time variations ⇒ New interpolation scheme
- Stellar field PSF models densely cover the parameter space of PSF variation (mainly 1D: focus)
- Find best-fitting stellar field model for stars in galaxy fields
- Clue: Determine correction for each exposure in undrizzled frames ⇒ Optimal time-dependence and minimal noise
- Compute combined model according to dither pattern
- Tests with stellar fields: 10 stars per galaxy field are enough to reduce spurious PSF anisotropy contribution to $\langle\gamma\gamma\rangle$ to $\lesssim 2\times 10^{-6}$

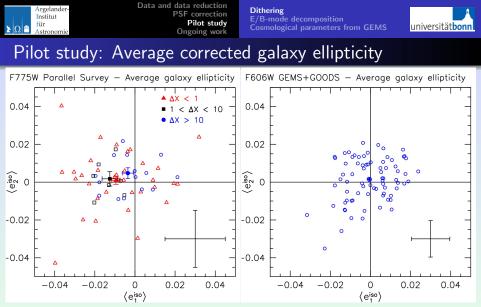


Figure: Average corrected galaxy ellipticity: For the parallel data the sample was split according to the maximal X-shift between the exposures [sub-pixels].

Dithering E/B-mode decomposition Cosmological parameters from GEMS

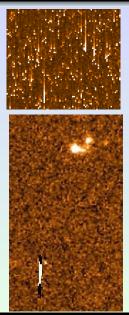
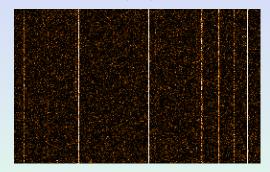



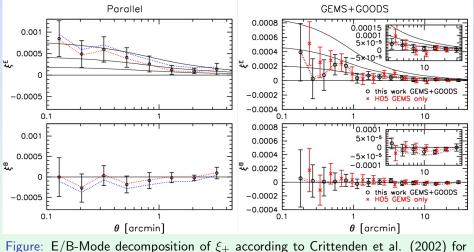
Figure: Image artefacts oriented in the Y-direction: Hot pixels with CTE trails (top left), bad-column residual (bottom left), structures in bias-variance image (right).

Conclusions

O Dither your data!

② Better know where your bad pixels are!

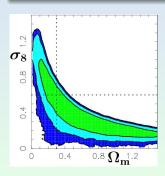
Tim Schrabback


Cosmic shear analysis of archival HST/ACS data

Dithering E/B-mode decomposition Cosmological parameters from GEMS

Pilot study: E/B-mode decomposition ξ_E , ξ_B

 $\sigma_8 = 0.7$. Curves: ACDM predictions for $\sigma_8 = (0.6, 0.8, 1.0)$, $z_m = 1.35/1.46$ (l/r).


Tim Schrabback

Cosmological parameter estimation from GEMS/GOODS

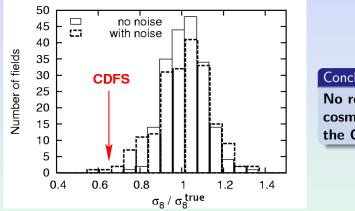
- Redshift distribution from the GOODS-MUSIC sample (Grazian et al. 2006): $z_{\rm m} = 1.46 \pm 0.12$
- Monte Carlo Markov Chain (MCMC) with ξ_{\pm} in 14 log-bins, $N = 96/[']^2$
- **ACDM** with $\Omega_{\rm m}, \Omega_{\Lambda} \in [0, 1.5]$; $(w, \Omega_{\rm b}, n_{\rm s}) = (-1, 0.042, 0.95)$; Smith et al. (2003)
- Covariances from 2000 Gaussian shear field realizations

Result: σ_8 for $\Omega_{\rm m}=0.3$

$$\begin{split} \sigma_8 &= 0.52^{+0.11}_{-0.15} \text{ (stat. 68\% conf.).} \\ \text{H05 result: } \sigma_8 (\Omega_{\rm m}/0.3)^{0.65} &= 0.68 \pm 0.13 \\ \text{Use H05 } z_{\rm m}(m_{606}) \text{ relation: } \sigma_8 &= 0.62^{+0.12}_{-0.16} \end{split}$$

Interpretation: local under-density of foreground structures in the CDFS.

Phleps et al. (2006): red galaxy deficiency

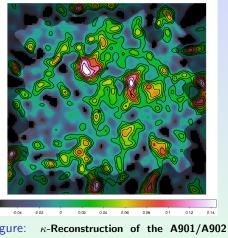

Strong non-Gaussian contribution to cosmic variance (see Kilbinger & Schneider 2005; Semboloni et al. 2006)

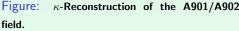
CDFS compared to ray-tracing A901/A902 COSMOS

How peculiar is the CDFS? Compare to ray-tracing...

Conclusion

No representative cosmology from the CDFS!

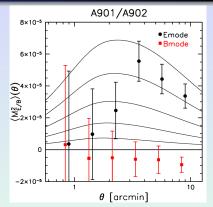

Figure: Ray-tracing through the GIF-Simulations: Histogramm of σ_8 -estimates from GEMS-like fields. $\Omega_{\Lambda} = 0.7$, $\Omega_{\rm m} = 0.3$, $\sigma_8 = 0.9$, L = 141.3 Mpc/h, 200 ray-tracing realisations (Hartlap et al. in prep.).

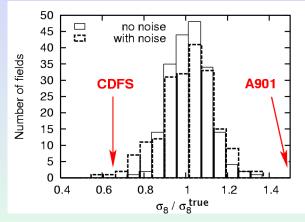


CDFS compared to ray-tracing A901/A902 COSMOS

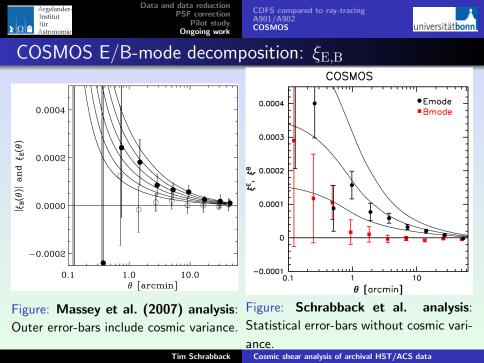
The A901/A902 super-cluster field

If representative: $\sigma_8 pprox 1.2 - 1.3$




Figure: $\langle M_{\rm ap}^2 \rangle$ E/B-mode decomposition for the A901/A902 field. Error-bars: statistical without cosmic variance. ACDM predictions for $z_{\rm m} = 1.25$ and $\sigma_8 = (0.6, ..., 1.4)$.

CDFS compared to ray-tracing A901/A902 COSMOS


And how peculiar is that?

Conclusion

No representative cosmology from the A901/A902 field either!

Figure: Ray-tracing through the GIF-Simulations: Histogramm of σ_8 -estimates from GEMS-like fields. $\Omega_{\Lambda} = 0.7$, $\Omega_{\rm m} = 0.3$, $\sigma_8 = 0.9$, L = 141.3 Mpc/h, 200 ray-tracing realisations (Hartlap et al. in prep.).

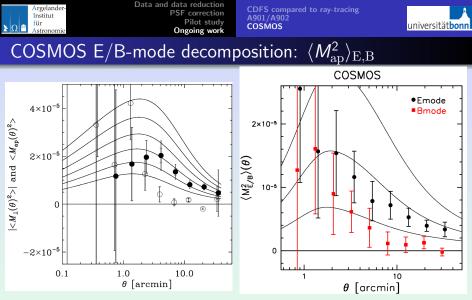
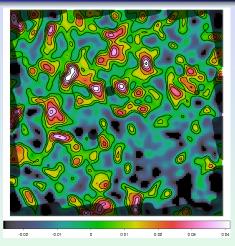
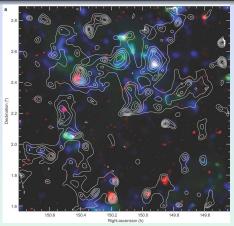


Figure: Massey et al. (2007) analysis: Outer error-bars include cosmic variance.

Figure: Schrabback et al. analysis: Statistical error-bars without cosmic vari-


 Tim Schrabback
 Cosmic shear analysis of archival HST/ACS data



COSMOS

COSMOS dark matter map

MOS field.

Figure: κ -Reconstruction of the COS-Figure: *k*-Reconstruction of the COS- MOS field and baryonic tracers from Massey et al. (2007), Nature 445.

Tim Schrabback

Cosmic shear analysis of archival HST/ACS data

CDFS compared to ray-tracing A901/A902 COSMOS

Conclusions

- The ACS PSF varies between subsequent exposures, which is properly taken into account in our PSF correction scheme.
- Good dithering is highly recommended for HST weak lensing studies.
- The CDFS is exceptionally under-dense.
- The TS and CH weak lensing pipelines yield consistent shear estimates.
- We recover the Massey et al. (2007) COSMOS κ -maps with good consistency.
- In the COSMOS data we detect a small scale B-mode with $\langle M_{ap}^2 \rangle$, similar to Massey et al. (2007), with yet unidentified origin.

Outlook

- Perform Ray-tracing comparison with larger volume.
- Verify the (non-)existence of filaments in the A901/A902 field.
- COSMOS: Track down the origin of the small-scale B-mode; determine cosmological parameters; check if significant dark mass peaks exist.
- Process and analyse the Extended ACS Parallel Survey.