Weak Lensing Goes Flexion

Er Xinzhong^{1,2}, Peter Schneider¹

¹AlfA & ²IMPRS, Bonn

XXIIIrd IAP Conference $2^{rd} - 6^{th}$, July, 2007

Outline

Introduction

- How we measure flexion
- Estimate flexion parameters

2 Numerical tests

Observation

Galaxy Cluster Abell 370 (VLT UT1 + FORS1)

ESO PR Photo 47c/98 (26 November 1998)

@ European Southern Observatory

Arclets, first detected by Bernard Forb et.al (1988)

Theory Goldberg, D.M. Bacon, D.J. 2005 APJ, 619, 741, Bacon,D.J. et al 2006 MNRAS, 365,414

Introduction

What is flexion ?

- Small scale variation in weak lensing
- Higher order lensing effect
- Gradient of shear

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Introduction

2nd-order expansion of lens equation

Second-order

$$eta_{i}= heta_{i}-\psi_{,ij} heta_{j}-\psi_{,ijk} heta_{j} heta_{k}/2$$

Differential operators

$$\nabla_{\rm c} := \frac{\partial}{\partial \theta_1} + {\rm i} \frac{\partial}{\partial \theta_2}, \ \nabla_{\rm c}^* := \frac{\partial}{\partial \theta_1} - {\rm i} \frac{\partial}{\partial \theta_2}$$

The differential operator ∇_c turns a spin-n field into a spin-(n+1) field, whereas ∇_c^* works opposite. For example, $\nabla_c^* \gamma = \nabla_c \kappa$ found by Kaiser (1995).

• then lens equation reads

$$\boldsymbol{\beta} = (1-\kappa)\boldsymbol{\theta} - \gamma\boldsymbol{\theta}^* - \frac{1}{4}\nabla_{\mathrm{c}}^*\kappa \ \boldsymbol{\theta}^2 - \frac{1}{2}\nabla_{\mathrm{c}}\kappa \ \boldsymbol{\theta}\theta^* - \frac{1}{4}\nabla_{\mathrm{c}}\gamma \ (\boldsymbol{\theta}^*)^2$$

Introduction

Mass sheet Degeneracy!

Under the transformation of κ_λ = (1 - λ) + λκ, the observable shape of the gravitational lens systems doesn't change. The shear is unobservable, but the reduced shear can be measured:

$$g = \frac{\gamma}{1-\kappa}$$

• Then reduced β

$$\hat{\beta} \equiv \frac{\beta}{(1-\kappa)} = \theta - g\theta^* - \Psi_1^*(G_1) \theta^2 - 2\Psi_1 \theta\theta^* - \Psi_3(G_1, G_3) (\theta^*)^2$$

where $G_3 = \nabla_c g$, $G_1 = \nabla_c^* g$ are reduced flexion parameters.

 The lensing equation determined by 3 parameters g, G₁ and G₃. Introduction

Weak lensing goes Bananas

(日) (日) (日) (日) (日) (日) (日) (日)

How we measure flexion

Measurements

• How to measure? Which observate characterize flexion

Definition

- Shapelets (Refregier, 2003);
- Brightness Moments

 $Mom[f(\beta)] = \int d^2\beta f(\beta) I^s(\beta), \ (Okura et al, 2006 HOLICs)$

We follow this, but in the reduced flexion.

How we measure flexion

Brightness Moments

2nd-order Brightness Moments

$$Q_2 = \frac{1}{S} \int d^2\theta \ \theta^2 I(\theta), \ Q_0 = \frac{1}{S} \int d^2\theta \ \theta \theta^* I(\theta),$$

with S is the total flux, and origin defined by $\int d^2\theta \theta I(\theta) = 0$. • then comes to 3rd-order,...

$$T_3 \equiv \frac{1}{S} \int d^2\theta \ \theta^3 I(\theta); \ T_1 \equiv \frac{1}{S} \int d^2\theta \ \theta^2 \theta^* I(\theta).$$

How we measure flexion

Moments equation

 By expanding brightness moments of source using lensing equation and determinant, we get relation between source and image moments.

$$egin{aligned} \mathsf{Q}_2^\mathrm{s} &= \mathsf{Q}_2 - 2g\mathsf{Q}_0 + g^2\mathsf{Q}_2^* + \mathcal{A}\mathcal{G} - (\mathcal{B}\mathcal{G})^2 \ && \mathcal{T}^\mathrm{s} = au + \mathcal{C}\mathcal{G} \end{aligned}$$

A,B are column matrices, C is matric composed of moments, and $\mathcal{G}^{T} = (G_{3}^{*}, G_{1}^{*}, G_{1}, G_{3}),$ $\mathcal{T}^{s,T} = (T_{3}^{s*}, T_{1}^{s*}, T_{1}^{s}, T_{3}^{s}), \tau = \tau(T_{1}, T_{3}, g).$

・ロト・「聞・ 《聞・ 《聞・ 《曰・

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへで

Estimate flexion parameters

Weak approximate

 In the weak lensing case (g
 1), one can remove some terms, and simplify the brightness moments relation

$$\begin{pmatrix} T_1^s \\ Q_2^s \\ T_3^s \end{pmatrix} = \begin{pmatrix} T_1 \\ Q_2 \\ T_3 \end{pmatrix} + \begin{pmatrix} \frac{12Q_0^2 - 9F_0}{4} & 0 & 0 \\ 0 & -2Q_0 & 0 \\ 0 & 0 & -\frac{3}{4}F_0 \end{pmatrix} \begin{pmatrix} G_1 \\ g \\ G_3 \end{pmatrix}$$

Estimate flexion parameters

Source assumption

Same as in weak lensing, assuming that the scource ellipticity and orientation are random, $< Q_2^s>=0, < T_1^s>=0$ and $< T_3^s>=0$

• G₁ and G₃ Estimators

$$G_1 = rac{4}{9F_0 - 12Q_0^2}T_1$$
 $G_3 = rac{4}{3F_0}T_3$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

Simulation

- Mean value of the estimators, over a source population with Gaussian ellipticity distribution, g = 0.01.
- The accuracy only depends on the product $G_i \theta_s$ (*i* = 1, 3).

€ 990

Error contours

• 5,10,15 percent errors on g for g = 0.05

Multiple solutions and Critical curves

Non-linear lensing equation

$$\hat{\beta} = \boldsymbol{\theta} - \boldsymbol{g}\boldsymbol{\theta}^* - \Psi_1^*(\boldsymbol{G}_1)\,\boldsymbol{\theta}^2 - 2\Psi_1\,\boldsymbol{\theta}\boldsymbol{\theta}^* - \Psi_3(\boldsymbol{G}_1,\boldsymbol{G}_3)\,(\boldsymbol{\theta}^*)^2$$

More than one solutions of the equation is allowed.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

• Critical curves come in !!

Critical curves Limit

Limits of valid flexion estimator

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

- Flexion is the gradient of shear and is simply related to the higher-order brightness moments.
- Only reduced shear and reduced flexion are measurable.
- Estimator bias is small, and depends on the dimensionless quantities $G_1\theta_s$, $G_3\theta_s$ and g.
- Flexion estimators have a limit by critical curves
- Future application Galaxy-galaxy lensing Substructure clusters