

Weak Lensing Survey of Several Billion Galaxies

Tony Tyson

Director, LSST Physics Department UC Davis

Relative Etendue (= $A\Omega$)

Massively Parallel Astrophysics

- Dark matter/dark energy via weak lensing
- Dark matter/dark energy via baryon acoustic oscillations
- Dark energy via supernovae
- Dark energy via counts of clusters of galaxies
- Galactic Structure encompassing local group
- Dense astrometry over 20000 sq.deg: rare moving objects
- Gamma Ray Bursts and transients to high redshift
- Gravitational micro-lensing
- Strong galaxy & cluster lensing: physics of dark matter
- Multi-image lensed SN time delays: separate test of cosmology
- Variable stars/galaxies: black hole accretion
- QSO time delays vs z: independent test of dark energy
- Optical bursters to 25 mag: the unknown
- 5-band 27 mag photometric survey: unprecedented volume
- Solar System Probes: Earth-crossing asteroids, Comets, trans- Neptunian objects

LSST survey of 20,000 sq deg 4 billion galaxies with redshifts Time domain: 100,000 asteroids **1 million supernovae 1** million lenses new phenomena

- 1. Cosmic shear (growth of structure + cosmic geometry)
- 2. Counts of massive structures vs redshift (growth of structure)
- 3. Baryon acoustic oscillations (angular diameter distance)
- 4. Measurements of Type 1a SNe (luminosity distance)
- 5. Mass power spectrum on very large scales tests CDM paradigm
- 6. Shortest scales of dark matter clumping tests models of dark matter particle physics

The LSST survey will address all with a single dataset!

LSST and Cosmic Shear

Ten redshift bins yield 55 auto and cross spectra

+ higher order

Baryon Acoustic Oscillations

Standard Ruler

Two Dimensions on the Sky Angular Diameter Distances

6-band Photometric Redshifts

LSST Survey

- 6-band Survey: u*grizy* 320–1050 nm Frequent revisits: grizy
- Sky area covered: >20,000 deg² 0.2 arcsec / pixel
- Each 10 sq.deg FOV revisited ~2000 times
- Limiting magnitude: 27.6 AB magnitude $@5\sigma$ 25 AB mag /visit = 2x15 seconds
- Photometry precision: 0.01 mag requirement, 0.001 mag goal

Visits per field for the 10 year simulated survey

Comparing HST with Subaru

Comparing HST with Subaru

HST ACS data

LSST: ~50 galaxies per sq.arcmin

Single exposure in 0.7 arcsec seeing

Residual Shear Correlation

Test of shear systematics: Use faint stars as proxies for galaxies, and calculate the shear-shear correlation.

Compare with expected cosmic shear signal.

Conclusion: 300 exposures per sky patch will yield negligible PSF induced shear systematics.

Wittman 2005

Systematic error:

0.003(1+z) <u>calibratable via angular correlation (Newman 2007)</u> Need 20,000 spectroscopic redshifts overall.

LSST Precision on Dark Energy [in DETF language]

Zhan 2006

Combining techniques breaks degeneracies. Requires wide sky area deep survey.

Precision vs etendue-time

Combining probes removes degeneracies

How good is the DETF w(a) ansatz?

LSST will measure total neutrino mass

There are 22 LSSTC US Institutional Members

- Brookhaven National Laboratory
- California Institute of Technology
- Columbia University
- Google Corporation
- Harvard-Smithsonian Center for Astrophysics
- Johns Hopkins University
- Las Cumbres Observatory
- Lawrence Livermore National Laboratory
- National Optical Astronomy
 Observatory
- Princeton University

- Purdue University
- Research Corporation
- Stanford Linear Accelerator Center
- Stanford University -KIPAC
- The Pennsylvania State University
- University of Arizona
- University of California, Davis
- University of California, Irvine
- University of Illinois at Champaign-Urbana
- University of Pennsylvania
- University of Pittsburgh
- University of Washington

The LSST will be on El Penon peak in Northern Chile in an NSF compound

1.5m photometric - calibration telescope

The LSST optical design: three large mirrors Large Synoptic Survey Telescope

The Telescope Mount and Dome

The LSST camera will have 3 Gigapixels in a 64cm diameter image plane

The LSST Focal Plane

The LSST Data Management Challenge:

LSST generates 6GB of raw data every 15 seconds that must be calibrated, processed, cataloged, indexed, and queried, etc. often in real time

LSST Data Management Model

Total LSST Data Management Computing Requirements

Timeline for the LSST

Comparison of Stage-IV facilities for DE

http://www.lsst.org