Optimized Cosmic Shear Statistics

Tim Eifler, AlfA University Bonn
Martin Kilbinger, IAP Paris
Peter Schneider, AlfA University Bonn

Paris, July 6th, 2007

Outline of the talk

(1) Introduction
(2) Basics of second-order cosmic shear measures
(3) The combined data vector
(4) Comparing the information content

- Method
- Difficulties - Solutions
- Results
(5) Contamination-B-modes
(6) Conclusions and Outlook

Introduction to my work

Goal

Find an improved cosmic shear data vector

- high information content \rightarrow tight constraints on cosmological parameters
- robust against contamination of the signal (B-modes)
- small correlation between data points of different angular scales (covariance matrices)

Two-point correlation function

$$
\boldsymbol{\xi}=\left(\xi_{+}\left(\vartheta_{1}\right), \ldots . ., \xi_{+}\left(\vartheta_{m}\right), \xi_{-}\left(\vartheta_{1}\right), \ldots ., \xi_{-}\left(\vartheta_{m}\right)\right)
$$

Aperture mass dispersion

$$
\left\langle\mathbf{M}_{\mathrm{ap}}^{2}\right\rangle=\left(\left\langle M_{\mathrm{ap}}^{2}\right\rangle\left(\theta_{1}\right), \ldots .\left\langle M_{\mathrm{ap}}^{2}\right\rangle\left(\theta_{n}\right)\right)
$$

Two-point correlation function (2PCF)

$$
\xi_{ \pm}(\vartheta)=\left\langle\gamma_{t} \gamma_{t}\right\rangle(\vartheta) \pm\left\langle\gamma_{\times} \gamma_{\times}\right\rangle(\vartheta)
$$

Relation to the power spectrum $P_{\kappa}=P_{\mathrm{E}}+P_{\mathrm{B}}$

$$
\begin{aligned}
& \xi_{+}(\vartheta)=\frac{1}{2 \pi} \int_{0}^{\infty} \mathrm{d} \ell \ell J_{0}(\ell \vartheta)\left[P_{\mathrm{E}}(\ell)+P_{\mathrm{B}}(\ell)\right] \\
& \xi_{-}(\vartheta)=\frac{1}{2 \pi} \int_{0}^{\infty} \mathrm{d} \ell \ell J_{4}(\ell \vartheta)\left[P_{\mathrm{E}}(\ell)-P_{\mathrm{B}}(\ell)\right]
\end{aligned}
$$

Important

$\xi_{ \pm}$are filtered versions of the power spectrum P_{κ}. The filter functions are the Bessel functions J_{0} and J_{4}

Aperture mass dispersion

Aperture mass dispersion $\left(\left\langle M_{\mathrm{ap}}^{2}\right\rangle\right)$

$$
\begin{aligned}
\left\langle M_{\mathrm{ap}}^{2}\right\rangle(\theta) & =\frac{1}{2 \pi} \int_{0}^{\infty} \mathrm{d} \ell \ell P_{\mathrm{E}}(\ell) W_{\mathrm{ap}}(\theta \ell) \\
\left\langle M_{\perp}^{2}\right\rangle(\theta) & =\frac{1}{2 \pi} \int_{0}^{\infty} \mathrm{d} \ell \ell P_{\mathrm{B}}(\ell) W_{\mathrm{ap}}(\theta \ell)
\end{aligned}
$$

Important

(1) $\left\langle M_{\mathrm{ap}}^{2}\right\rangle$ is also a filtered version of the power spectrum P_{κ}
(2) $\left\langle M_{\mathrm{ap}}^{2}\right\rangle$ can be calculated from the 2 pcf $\longrightarrow 2$ pcf can be seen as the basic quantity

$$
\left\langle M_{\mathrm{ap}}^{2}\right\rangle(\theta)=\int_{0}^{2 \theta} \frac{\mathrm{~d} \vartheta \vartheta}{\theta^{2}} \frac{1}{2}\left[\xi_{+}(\vartheta) T_{+}\left(\frac{\vartheta}{\theta}\right)+\xi_{-}(\vartheta) T_{-}\left(\frac{\vartheta}{\theta}\right)\right]
$$

(Dis)Advantages of the different measures

- very broad filter $\longrightarrow \xi_{+}$probes a wide range of P_{κ}
- includes information on angular scales larger than the size of the survey

$\left\langle M_{\text {ap }}^{2}\right\rangle$

- narrowest filter function
- gives highly localized measure of P_{κ}
- low correlation between data points of different scales
- no large scale information of the power spectrum due to its narrow filter
- difficult to measure from data field due to gaps, holes, stars

Combined data vector

idea: add one value of $\xi_{+}\left(\theta_{0}\right)$ to a $\left\langle M_{\mathrm{ap}}^{2}\right\rangle$ data vector to include the large scale information of P_{κ}

$$
\mathcal{N}=\left(\left\langle M_{\mathrm{ap}}^{2}\right\rangle\left(\theta_{1}\right), \ldots .\left\langle M_{\mathrm{ap}}^{2}\right\rangle\left(\theta_{n}\right), \xi_{+}\left(\theta_{0}\right)\right)
$$

Two-point correlation function

$$
\boldsymbol{\xi}=\left(\xi_{+}\left(\vartheta_{1}\right), \ldots . ., \xi_{+}\left(\vartheta_{m}\right), \xi_{-}\left(\vartheta_{1}\right), \ldots, \xi_{-}\left(\vartheta_{m}\right)\right)
$$

Aperture mass dispersion

$$
\left\langle\mathbf{M}_{\mathrm{ap}}^{2}\right\rangle=\left(\left\langle M_{\mathrm{ap}}^{2}\right\rangle\left(\theta_{1}\right), \ldots .\left\langle M_{\mathrm{ap}}^{2}\right\rangle\left(\theta_{n}\right)\right)
$$

Comparing the information content

Method

Information content of a cosmic shear data vector \rightarrow ability of constraining cosmological parameters \rightarrow Bayesian likelihood analysis

Bayes theorem - cosmic shear data

$$
P\left(\pi \mid \boldsymbol{\xi}_{ \pm}, \Lambda C D M\right)=\frac{P\left(\boldsymbol{\xi}_{ \pm} \mid \boldsymbol{\pi}, \wedge C D M\right) P(\boldsymbol{\pi} \mid \wedge C D M)}{P\left(\boldsymbol{\xi}_{ \pm} \mid \wedge C D M\right)}
$$

Likelihood

$$
P(\xi \mid \boldsymbol{\pi}, \wedge C D M)=\frac{1}{(2 \pi)^{n / 2} \sqrt{\operatorname{det} \mathbf{C}_{\xi}}} \exp \left[-\frac{1}{2}\left(\xi(\boldsymbol{\pi})-\boldsymbol{\xi}^{f}\right)^{t} \mathbf{C}_{\xi}^{-1}\left(\xi(\boldsymbol{\pi})-\boldsymbol{\xi}^{f}\right)\right]
$$

Marginalization

$$
P\left(\pi_{12} \mid \xi_{ \pm}, \wedge C D M\right)=\int d \pi_{3} \int d \pi_{4} P\left(\pi_{1234} \mid \xi_{ \pm}, \Lambda C D M\right)
$$

First guess

$$
\hat{\mathbf{C}}_{*}^{-1}=\left(\hat{\mathbf{C}}^{M L}\right)^{-1}
$$

- estimator is consistent but it is biased due to noise in $\hat{\mathbf{C}}$.
- only linear transformations preserve "unbiasedness"

The amount of bias/size of the likelihood contours vary dependent on the relation

$$
\frac{\text { number of bins }(\mathrm{B})}{\text { number of independent realizations (N) }}
$$

- more realisations \rightarrow larger contours
- more bins \rightarrow smaller contours
- for $\mathrm{B} \geq \mathrm{N}-2$ the covariance matrix becomes singular

Without correction factor...one example

Correction-Factor (Hartlap et al. 2006; Anderson 2003)

An unbiased estimator for the inverted covariance is given by

$$
\hat{\mathbf{C}}^{-1}=\frac{\mathrm{N}-\mathrm{B}-2}{\mathrm{~N}-1} \hat{\mathbf{C}}_{*}^{-1} \text { for } \mathrm{B}<\mathrm{N}-2
$$

- ray-tracing simulations provide 36 independent realisations
- multiply the number of independent realisations by adding different Gaussian noise to the galaxy ellipticities ($N=108,216$, $360,720,1080,1440,1800)$
- estimate the covariance from every sample
- consider the trace of the inverted covariance depending on the ratio bins/realisations
(1) correction factor $=0.34$
(2) correction factor $=0.67$
(3) correction factor $=0.96$

Solution and results

- 2pcf: ϑ-range $=0.2^{\prime}-199^{\prime}, 35$ bins each for $\xi_{ \pm}$
- \mathcal{N} : added data point $\xi_{+}\left(5^{\prime}\right), 21$ bins
- $\left\langle M_{\mathrm{ap}}^{2}\right\rangle: \theta$-range $=2.2^{\prime}-99^{\prime}, 20$ bins

More results

parameter space	$\left\langle\mathbf{M}_{\text {ap }}^{2}\right\rangle$	$\boldsymbol{\mathcal { N }}$	$\boldsymbol{\xi}$	$\Delta \boldsymbol{\mathcal { N }}$	$\Delta \boldsymbol{\xi}$
Γ vs. Ω_{m}	14.7	11.7	9.1	20.4%	38.1%
σ_{8} vs. Γ	23.1	19.0	14.6	17.8%	36.8%
σ_{8} vs. Ω_{m}	427.1	314.5	220.1	26.4%	48.5%
z_{0} vs. Ω_{m}	46.4	41.0	32.9	11.6%	29.1%

Marginalized over z_{0}

Argelander-

$$
\mathcal{Q}_{i j} \equiv \frac{\int \mathrm{~d}^{2} \pi P\left(\pi_{1}, \pi_{2}\right)\left(\pi_{i}-\pi_{i}^{\mathrm{f}}\right)\left(\pi_{j}-\pi_{j}^{\mathrm{f}}\right)}{\int \mathrm{d}^{2} \pi P\left(\pi_{1}, \pi_{2}\right)}
$$

$$
\begin{aligned}
q & =\sqrt{\operatorname{det} \mathcal{Q}_{i j}} \\
& =\sqrt{\mathcal{Q}_{11} \mathcal{Q}_{22}-\mathcal{Q}_{12}^{2}}
\end{aligned}
$$

Idea: Vary the added $\xi_{+}\left(\theta_{0}\right)$ in $\boldsymbol{\mathcal { N }}$ in order to optimize the information content

Contamination with B-modes

- The likelihood maximum of the 2PCF data vector is far away from the "true" cosmological parameters
- The combined data vector is hardly affected by the contamination
- It still gives better constraints on cosmological parameters than the aperture mass dispersion

The combined data vector

- The new data vector $\boldsymbol{\mathcal { N }}$ is a strong improvement in information content compared to $\left\langle M_{\mathrm{ap}}^{2}\right\rangle$
- \mathcal{N} can be optimized by varying $\xi_{+}\left(\theta_{0}\right)$
- its covariance matrix is much more diagonal compared with the $2 \mathrm{PCF} \rightarrow$ more robust against numerical problems during the inversion
- it is hardly affected by a B-mode contamination on small angular scales

Future work

- Improve information content further by looking into other cosmic shear statistics (e.g. ring statistics)
- higher order statistics
- Find better estimates for covariances (robust, unbiased)

Ingredients for the likelihood analysis

Data vectors and covariances

- calculate power spectrum P_{δ} for our fiducial model according to Smith et al. 2003
- calculate P_{κ} and the data vectors $\boldsymbol{\xi}^{f},\left\langle\mathbf{M}_{\mathrm{ap}}^{2}\right\rangle^{f}, \boldsymbol{N}^{f}$
- vary parameters and recalculate the data vectors $\boldsymbol{\xi}(\pi),\left\langle\mathbf{M}_{\text {ap }}^{2}\right\rangle(\pi), \mathcal{N}(\pi)$ for every variation
- derive the covariance matrix \mathbf{C}_{ξ} by field to field variation from ray-tracing simulations (Jenkins et al. 2001 for simulation details and Hamana \& Mellier 2001 for details of the ray-tracing algorithm)
- calculate therefrom the covariances of $\left\langle\mathbf{M}_{\mathrm{ap}}^{2}\right\rangle$ and $\boldsymbol{\mathcal { N }}$

Fiducial model

Ω_{m}	Ω_{Λ}	h	Γ	σ_{8}	Ω_{b}
0.3	0.7	0.7	0.1723	0.9	0.04

Covariances of ξ : including B-modes

Recall

$$
\left\langle\Delta P_{E}(\bar{\ell}) \Delta P_{B}\left(\overline{\ell^{\prime}}\right)\right\rangle=0 \rightarrow \mathbf{C}_{t o t}=\mathbf{C}_{E}+\mathbf{C}_{B}
$$

$$
\begin{aligned}
\left\langle\Delta \xi_{ \pm}\left(\theta_{1}\right) \Delta \xi_{ \pm}\left(\theta_{2}\right)\right\rangle= & \int_{0}^{\infty} \frac{\mathrm{d} \ell \ell}{\pi A} J_{0 / 4}\left(\ell \theta_{1}\right) J_{0 / 4}\left(\ell \theta_{2}\right) \\
& \times\left\{\left(P_{E}(\ell)+\frac{\sigma_{\epsilon}^{2}}{2 n}\right)^{2}+\left(P_{B}(\ell)+\frac{\sigma_{\epsilon}^{2}}{2 n}\right)^{2}\right\} \\
\left\langle\Delta \xi_{+}\left(\theta_{1}\right) \Delta \xi_{-}\left(\theta_{2}\right)\right\rangle= & \int_{0}^{\infty} \frac{\mathrm{d} \ell \ell}{\pi A} J_{0}\left(\ell \theta_{1}\right) J_{4}\left(\ell \theta_{2}\right) \\
& \times\left\{\left(P_{E}(\ell)+\frac{\sigma_{\epsilon}^{2}}{2 n}\right)^{2}-\left(P_{B}(\ell)+\frac{\sigma_{\epsilon}^{2}}{2 n}\right)^{2}\right\}
\end{aligned}
$$

- currently there is no model available for B-modes
- we know, B-modes occur mainly on small scales
- Our model:
$P_{\mathrm{B}}=0.2 P_{\mathrm{E}} \exp \left(\frac{-\ell_{\mathrm{B}}}{\ell}\right)$

For small θ-values $\operatorname{Cov}_{\mathcal{M}}$ cannot be calculated properly from the $\operatorname{Cov}_{\xi} \longrightarrow$ data vectors \mathcal{M} and \mathcal{N} start at a given $\theta_{\text {min }}$

arcmin

- Recalculate all data vectors taking P_{B} into account
- Calculate the covariance matrix for the correlation function where
(1) C_{E} is taken from the ray-tracing simulations
(2) C_{B} is calcualted directly from P_{B}
- Carefull: \mathbf{C}_{E} needs correction factor for the inversion, \mathbf{C}_{B} does not \rightarrow

$$
\begin{aligned}
\mathbf{C}_{\text {tot }}^{-1} & =\left(\mathbf{C}_{E}+\mathbf{C}_{B}\right)^{-1} \\
& =\mathbf{C}_{E}^{-1}-\frac{1}{\operatorname{trace}\left(\mathbf{C}_{E}^{-1} \mathbf{C}_{B}\right)} \mathbf{C}_{B} \mathbf{C}_{E}^{-1} \mathbf{C}_{B}
\end{aligned}
$$

- calculate covariances for the two other data vectors from \mathbf{C}_{ξ}
- calculate the posterior likelihood and plot contours

