Optimized Cosmic Shear Statistics

Tim Eifler, AlfA University Bonn Martin Kilbinger, IAP Paris Peter Schneider, AlfA University Bonn

Paris, July 6th, 2007

Introduction Basics The combined data vector Comparison B-modes Conclusions

Image: A mathematical states and a mathem

Introduction

- 2 Basics of second-order cosmic shear measures
- 3 The combined data vector
- 4 Comparing the information content
 - Method
 - Difficulties Solutions
 - Results
- 5 Contamination B-modes
- 6 Conclusions and Outlook

< □ > < 同 >

Goal

Find an improved cosmic shear data vector

- \bullet high information content \rightarrow tight constraints on cosmological parameters
- robust against contamination of the signal (B-modes)
- small correlation between data points of different angular scales (covariance matrices)

Two-point correlation function

$$\boldsymbol{\xi} = (\xi_+(\vartheta_1), \dots, \xi_+(\vartheta_m), \xi_-(\vartheta_1), \dots, \xi_-(\vartheta_m))$$

Aperture mass dispersion

$$\langle \mathsf{M}_{\mathsf{ap}}^2 \rangle = (\langle M_{\mathsf{ap}}^2 \rangle (\theta_1), ..., \langle M_{\mathsf{ap}}^2 \rangle (\theta_n))$$

< ロ > < 同 > < 回 > < 回 >

Two-point correlation function (2PCF)

$$\xi_{\pm}(\vartheta) = \langle \gamma_t \gamma_t \rangle(\vartheta) \pm \langle \gamma_{\times} \gamma_{\times} \rangle(\vartheta)$$

Relation to the power spectrum $P_{\kappa} = P_{\mathsf{E}} + P_{\mathsf{B}}$

$$\begin{aligned} \xi_{+}(\vartheta) &= \frac{1}{2\pi} \int_{0}^{\infty} \mathrm{d}\ell \ \ell \ J_{0}(\ell\vartheta) \left[P_{\mathsf{E}}(\ell) + P_{\mathsf{B}}(\ell) \right] \\ \xi_{-}(\vartheta) &= \frac{1}{2\pi} \int_{0}^{\infty} \mathrm{d}\ell \ \ell \ J_{4}(\ell\vartheta) \left[P_{\mathsf{E}}(\ell) - P_{\mathsf{B}}(\ell) \right] \end{aligned}$$

Important

 ξ_\pm are filtered versions of the power spectrum $P_\kappa.$ The filter functions are the Bessel functions J_0 and J_4

< ロ > < 回 > < 回 > < 回 > < 回 > :

Aperture mass dispersion $(\langle M_{ap}^2 \rangle)$

$$\langle M_{ap}^{2} \rangle(\theta) = \frac{1}{2\pi} \int_{0}^{\infty} d\ell \ \ell \ P_{E}(\ell) W_{ap}(\theta\ell)$$

$$\langle M_{\perp}^{2} \rangle(\theta) = \frac{1}{2\pi} \int_{0}^{\infty} d\ell \ \ell \ P_{B}(\ell) W_{ap}(\theta\ell)$$

Important

- $\langle M_{\rm ap}^2 \rangle$ is also a filtered version of the power spectrum P_{κ}

$$\langle M_{\rm ap}^2 \rangle(\theta) = \int_0^{2\theta} \frac{\mathrm{d}\vartheta \,\vartheta}{\theta^2} \, \frac{1}{2} \left[\xi_+(\vartheta) \, T_+\left(\frac{\vartheta}{\theta}\right) + \xi_-(\vartheta) \, T_-\left(\frac{\vartheta}{\theta}\right) \right]$$

(日)

(Dis)Advantages of the different measures

ξ_{\pm}

- very broad filter $\longrightarrow \xi_+$ probes a wide range of P_{κ}
- includes information on angular scales larger than the size of the survey

$\langle M_{\rm ap}^2 \rangle$

- narrowest filter function
- gives highly localized measure of P_κ
- low correlation between data points of different scales
- no large scale information of the power spectrum due to its narrow filter
- difficult to measure from data field due to gaps, holes, stars

Combined data vector

idea: add one value of $\xi_+(\theta_0)$ to a $\langle M^2_{\rm ap}\rangle$ data vector to include the large scale information of P_κ

$$\mathcal{N} = (\langle M_{\mathsf{ap}}^2 \rangle(\theta_1), ..., \langle M_{\mathsf{ap}}^2 \rangle(\theta_n), \xi_+(\theta_0))$$

Two-point correlation function

$$\boldsymbol{\xi} = (\xi_+(\vartheta_1), \dots, \xi_+(\vartheta_m), \xi_-(\vartheta_1), \dots, \xi_-(\vartheta_m))$$

Aperture mass dispersion

$$\langle \mathsf{M}^2_{\mathsf{ap}}
angle = (\langle M^2_{\mathsf{ap}}
angle(heta_1), \langle M^2_{\mathsf{ap}}
angle(heta_n))$$

<ロ> <同> <同> < 同> < 同>

Method

Information content of a cosmic shear data vector \to ability of constraining cosmological parameters \to Bayesian likelihood analysis

Bayes theorem - cosmic shear data

$$P(\pi|m{\xi}_{\pm}, \wedge CDM) = rac{P(m{\xi}_{\pm}|\pi, \wedge CDM) P(\pi|\wedge CDM)}{P(m{\xi}_{\pm}|\wedge CDM)}$$

Likelihood

$$\mathcal{P}(m{\xi}|\pi, \Lambda \textit{CDM}) = rac{1}{(2\pi)^{n/2}\sqrt{\det \mathbf{C}_{\xi}}} exp\left[-rac{1}{2}(m{\xi}(\pi) - m{\xi}^{f})^{t} \ \mathbf{C}_{\xi}^{-1} \ (m{\xi}(\pi) - m{\xi}^{f})
ight]$$

Marginalization

$$P(\boldsymbol{\pi}_{12}|\boldsymbol{\xi}_{\pm}, \Lambda CDM) = \int d\pi_3 \int d\pi_4 P(\boldsymbol{\pi}_{1234}|\boldsymbol{\xi}_{\pm}, \Lambda CDM)$$

First guess

$$\boldsymbol{\hat{C}_{*}^{-1}} = \left(\boldsymbol{\hat{C}}^{\textit{ML}}\right)^{-1}$$

- estimator is consistent but it is *biased* due to noise in $\hat{\mathbf{C}}$.
- only linear transformations preserve "unbiasedness"

The amount of bias/size of the likelihood contours vary dependent on the relation

number of bins (B) number of independent realizations (N)

- \bullet more realisations \rightarrow larger contours
- more bins \rightarrow smaller contours
- for $B \ge N 2$ the covariance matrix becomes singular

(日)

Without correction factor...one example

Argelander-Institut für Astronomie

Correction-Factor (Hartlap et al. 2006; Anderson 2003)

An unbiased estimator for the inverted covariance is given by

$$\boldsymbol{\hat{C}}^{-1} = \frac{\mathsf{N} - \mathsf{B} - 2}{\mathsf{N} - 1} \boldsymbol{\hat{C}}_*^{-1} \ \text{ for } \mathsf{B} < \mathsf{N} - 2$$

Introduction Basics The combined data vector Comparison B-modes Conclusions

- ray-tracing simulations provide 36 independent realisations
- multiply the number of independent realisations by adding different Gaussian noise to the galaxy ellipticities (N = 108, 216, 360, 720, 1080, 1440, 1800)

< □ > < 同 >

- estimate the covariance from every sample
- consider the trace of the inverted covariance depending on the ratio bins/realisations

Now it works...

- **①** correction factor = 0.34
- **2** correction factor = 0.67
- \bigcirc correction factor = 0.96

(日) (四) (三) (三)

Solution and results

Ω 🖀 Argelander-Institut für Astronomie

- 2pcf: ϑ -range=0.2' 199', 35 bins each for ξ_{\pm}
- \mathcal{N} : added data point $\xi_+(5')$, 21 bins
- $\langle M_{ap}^2 \rangle$: θ -range=2.2' 99', 20 bins

<ロ> (日) (日) (日) (日) (日)

More results

Argelander-Institut für Astronomie

parameter space	$\langle M^2_{\mathrm{ap}} \rangle$	\mathcal{N}	ξ	$\Delta \mathcal{N}$	$\Delta \xi$
Γ vs. $Ω_{\rm m}$	14.7	11.7	9.1	20.4 %	38.1 %
σ_8 vs. Γ	23.1	19.0	14.6	17.8 %	36.8 %
σ_8 vs. $\Omega_{ m m}$	427.1	314.5	220.1	26.4 %	48.5 %
z_0 vs. $\Omega_{ m m}$	46.4	41.0	32.9	11.6 %	29.1 %

・ロト ・回ト ・ヨト ・ヨト

Marginalized over z₀

Argelander-Institut für Astronomie

(日)

Optimizing the combined data vector $\ensuremath{\mathcal{N}}$

$$\mathcal{Q}_{ij} \equiv rac{\int \mathsf{d}^2 \pi \; P(\pi_1,\pi_2)(\pi_i-\pi_i^{\mathrm{f}})(\pi_j-\pi_j^{\mathrm{f}})}{\int \mathsf{d}^2 \pi \; P(\pi_1,\pi_2)}$$

$$egin{array}{rcl} q&=&\sqrt{\det \mathcal{Q}_{ij}}\ &=&\sqrt{\mathcal{Q}_{11}\mathcal{Q}_{22}-\mathcal{Q}_{12}^2} \end{array}$$

< □ > < 同 >

Contamination with B-modes

Argelander-Institut für Astronomie

- The likelihood maximum of the 2PCF data vector is far away from the "true" cosmological parameters
- The combined data vector is hardly affected by the contamination
- It still gives better constraints on cosmological parameters than the aperture mass dispersion

The combined data vector

- The new data vector ${\cal N}$ is a strong improvement in information content compared to $\langle M^2_{\rm ap}\rangle$
- $\mathcal N$ can be optimized by varying $\xi_+(heta_0)$
- $\bullet\,$ its covariance matrix is much more diagonal compared with the 2PCF $\to\,$ more robust against numerical problems during the inversion
- it is hardly affected by a B-mode contamination on small angular scales

Future work

- Improve information content further by looking into other cosmic shear statistics (e.g. ring statistics)
- higher order statistics
- Find better estimates for covariances (robust, unbiased)

< ロ > < 同 > < 回 > < 回 >

Data vectors and covariances

- calculate power spectrum P_{δ} for our fiducial model according to Smith et al.2003
- calculate P_{κ} and the data vectors $\boldsymbol{\xi}^{f}, \left\langle \mathsf{M}_{\mathsf{ap}}^{2} \right\rangle^{f}, \boldsymbol{\mathcal{N}}^{f}$
- vary parameters and recalculate the data vectors $\xi(\pi), \langle M_{ap}^2 \rangle(\pi), \mathcal{N}(\pi)$ for every variation
- derive the covariance matrix C_{ξ} by field to field variation from ray-tracing simulations (Jenkins et al. 2001 for simulation details and Hamana & Mellier 2001 for details of the ray-tracing algorithm)
- $\bullet\,$ calculate therefrom the covariances of $\langle M^2_{_{ap}}\rangle$ and ${\cal N}\,$

Fiducial model

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \Omega_{\rm m} & \Omega_{\Lambda} & h & \Gamma & \sigma_8 & \Omega_{\rm b} \\ \hline 0.3 & 0.7 & 0.7 & 0.1723 & 0.9 & 0.04 \\ \hline \end{array}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall

$$\langle \Delta P_E(\bar{\ell}) \Delta P_B(\bar{\ell}') \rangle = 0 \rightarrow \mathbf{C}_{tot} = \mathbf{C}_E + \mathbf{C}_B$$

$$\begin{split} \langle \Delta \xi_{\pm}(\theta_{1}) \ \Delta \xi_{\pm}(\theta_{2}) \rangle &= \int_{0}^{\infty} \frac{\mathrm{d}\ell \ \ell}{\pi A} \ J_{0/4}(\ell \theta_{1}) J_{0/4}(\ell \theta_{2}) \\ &\times \left\{ \left(P_{E}(\ell) + \frac{\sigma_{\epsilon}^{2}}{2n} \right)^{2} + \left(P_{B}(\ell) + \frac{\sigma_{\epsilon}^{2}}{2n} \right)^{2} \right\} \\ \langle \Delta \xi_{\pm}(\theta_{1}) \ \Delta \xi_{-}(\theta_{2}) \rangle &= \int_{0}^{\infty} \frac{\mathrm{d}\ell \ \ell}{\pi A} \ J_{0}(\ell \theta_{1}) J_{4}(\ell \theta_{2}) \\ &\times \left\{ \left(P_{E}(\ell) + \frac{\sigma_{\epsilon}^{2}}{2n} \right)^{2} - \left(P_{B}(\ell) + \frac{\sigma_{\epsilon}^{2}}{2n} \right)^{2} \right\} \end{split}$$

- currently there is no model available for B-modes
- we know, B-modes occur mainly on small scales
- Our model: $P_{\rm B} = 0.2 P_{\rm E} \exp\left(\frac{-\ell_B}{\ell}\right)$

< □ > < 同 >

Difficulties I

Argelander-Institut für Astronomie

For small $\theta\text{-values }\mathsf{Cov}_{\mathcal{M}}$ cannot be calculated properly from the $\mathsf{Cov}_{\xi} \longrightarrow$ data vectors $\mathcal M$ and $\mathcal N$ start at a given θ_{\min}

Introduction Basics The combined data vector Comparison B-modes Conclusions

Tim Eifler

- Recalculate all data vectors taking P_B into account
- Calculate the covariance matrix for the correlation function where
 - **Q** C_E is taken from the ray-tracing simulations
 - **2** C_B is calcualted directly from P_B
- \bullet Carefull: \boldsymbol{C}_{E} needs correction factor for the inversion, \boldsymbol{C}_{B} does not \rightarrow

$$\begin{aligned} \mathbf{C}_{\text{tot}}^{-1} &= (\mathbf{C}_E + \mathbf{C}_B)^{-1} \\ &= \mathbf{C}_E^{-1} - \frac{1}{\text{trace}\left(\mathbf{C}_E^{-1}\mathbf{C}_B\right)} \mathbf{C}_B \mathbf{C}_E^{-1} \mathbf{C}_B \end{aligned}$$

- calculate covariances for the two other data vectors from \mathbf{C}_{ξ}
- calculate the posterior likelihood and plot contours