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Introduction to my work

Goal

Find an improved cosmic shear data vector

high information content → tight constraints on cosmological parameters

robust against contamination of the signal (B-modes)

small correlation between data points of different angular scales
(covariance matrices)

Two-point correlation function

ξ = (ξ+(ϑ1), ....., ξ+(ϑm), ξ−(ϑ1), ...., ξ−(ϑm))

Aperture mass dispersion

〈M2
ap〉 = (〈M2

ap〉(θ1), ....〈M2
ap〉(θn))
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Second-order cosmic shear measures

Two-point correlation function (2PCF)

ξ±(ϑ) = 〈γtγt〉(ϑ)± 〈γ×γ×〉(ϑ)

Relation to the power spectrum Pκ = PE + PB

ξ+(ϑ) =
1

2π

∫ ∞

0

d` ` J0(`ϑ) [PE(`) + PB(`)]

ξ−(ϑ) =
1

2π

∫ ∞

0

d` ` J4(`ϑ) [PE(`)− PB(`)]

Important

ξ± are filtered versions of the power spectrum Pκ. The filter functions are the
Bessel functions J0 and J4
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Aperture mass dispersion

Aperture mass dispersion (〈M2
ap〉)

〈M2
ap〉(θ) =

1

2π

∫ ∞

0

d` ` PE(`)Wap(θ`)

〈M2
⊥〉(θ) =

1

2π

∫ ∞

0

d` ` PB(`)Wap(θ`)

Important

1 〈M2
ap〉 is also a filtered version of the power spectrum Pκ

2 〈M2
ap〉 can be calculated from the 2pcf −→ 2pcf can be seen as the basic

quantity

〈M2
ap〉(θ) =

∫ 2θ

0

dϑ ϑ

θ2

1

2

[
ξ+(ϑ)T+

(
ϑ

θ

)
+ ξ−(ϑ)T−

(
ϑ

θ

)]
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(Dis)Advantages of the different measures

ξ±

very broad filter −→ ξ+ probes a wide
range of Pκ

includes information on angular scales
larger than the size of the survey

〈M2
ap〉

narrowest filter
function

gives highly localized
measure of Pκ

low correlation
between data points
of different scales

no large scale
information of the
power spectrum due
to its narrow filter

difficult to measure
from data field due to
gaps, holes, stars
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The combined data vector

Combined data vector

idea: add one value of ξ+(θ0) to a 〈M2
ap〉 data vector to include the large scale

information of Pκ

N = (〈M2
ap〉(θ1), ....〈M2

ap〉(θn), ξ+(θ0))

Two-point correlation function

ξ = (ξ+(ϑ1), ....., ξ+(ϑm), ξ−(ϑ1), ...., ξ−(ϑm))

Aperture mass dispersion

〈M2
ap〉 = (〈M2

ap〉(θ1), ....〈M2
ap〉(θn))
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Comparing the information content

Method

Information content of a cosmic shear data vector → ability of constraining
cosmological parameters → Bayesian likelihood analysis

Bayes theorem - cosmic shear data

P(π|ξ±,ΛCDM) =
P(ξ±|π,ΛCDM) P(π|ΛCDM)

P(ξ±|ΛCDM)

Likelihood

P(ξ|π,ΛCDM) =
1

(2π)n/2
√

det Cξ

exp

[
−1

2
(ξ(π)− ξf )t C−1

ξ (ξ(π)− ξf )

]

Marginalization

P(π12|ξ±,ΛCDM) =

∫
dπ3

∫
dπ4 P(π1234|ξ±,ΛCDM)
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Inversion of the covariance

First guess

Ĉ−1
∗ =

(
Ĉ

ML
)−1

estimator is consistent but it is biased due to noise in Ĉ.

only linear transformations preserve “unbiasedness”

The amount of bias/size of the likelihood contours vary dependent on the
relation

number of bins (B)

number of independent realizations (N)

more realisations → larger contours

more bins → smaller contours

for B ≥ N− 2 the covariance matrix becomes singular
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Without correction factor...one example

Σ8

Ωm Ωm Ωm

ξ±,B/N = 0.65 ξ±,B/N = 0.32 ξ±,B/N = 0.039

Correction-Factor ( Hartlap et al. 2006; Anderson 2003)

An unbiased estimator for the inverted covariance is given by

Ĉ
−1

=
N− B− 2

N− 1
Ĉ
−1

∗ for B < N− 2
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Checking the correction factor

ray-tracing simulations
provide 36 independent
realisations

multiply the number of
independent realisations by
adding different Gaussian
noise to the galaxy
ellipticities (N = 108, 216,
360, 720, 1080, 1440, 1800)

estimate the covariance from every sample

consider the trace of the inverted covariance depending on the ratio
bins/realisations
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Now it works...

1 correction factor = 0.34

2 correction factor = 0.67

3 correction factor = 0.96

Σ8

Ωm Ωm Ωm

ξ± ξ± ξ±
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Solution and results

Σ8

Ωm Ωm Ωm

ξ± N 〈M2
ap〉

2pcf: ϑ-range=0.2′ − 199′, 35 bins each for ξ±

N : added data point ξ+(5′), 21 bins

〈M2
ap〉: θ-range=2.2′ − 99′, 20 bins
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More results

σ8

Ωm Ωm Ωm

ξ± N 〈M2
ap〉

parameter space 〈M2
ap〉 N ξ ∆N ∆ξ

Γ vs. Ωm 14.7 11.7 9.1 20.4 % 38.1 %
σ8 vs. Γ 23.1 19.0 14.6 17.8 % 36.8 %

σ8 vs. Ωm 427.1 314.5 220.1 26.4 % 48.5 %
z0 vs. Ωm 46.4 41.0 32.9 11.6 % 29.1 %
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Marginalized over z0

σ8

Ωm Ωm Ωm

ξ± N 〈M2
ap〉

parameter space 〈M2
ap〉 N ξ ∆N ∆ξ

σ8 vs. Ωm (z0) 416.9 313.4 230.0 25.8 % 44.8 %
σ8 vs. Ωm (Γ) 780.5 720.9 527.0 7.6 % 32.5 %

σ8 vs. Ωm (Γ, z0) 983.8 850.6 623.5 13.5 % 36.6 %
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Optimizing the combined data vector N

Qij ≡
∫

d2π P(π1, π2)(πi − πf
i )(πj − πf

j )∫
d2π P(π1, π2)

q =
√

detQij

=
√
Q11Q22 −Q2

12

Idea: Vary the added
ξ+(θ0) in N in order to
optimize the information
content
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Contamination with B-modes

σ8

Ωm Ωm Ωm

ξ± N 〈M2
ap〉

The likelihood maximum of the 2PCF data vector is far away from the
“true” cosmological parameters

The combined data vector is hardly affected by the contamination

It still gives better constraints on cosmological parameters than the
aperture mass dispersion
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Conclusions and Outlook

The combined data vector

The new data vector N is a strong improvement in information content
compared to 〈M2

ap〉
N can be optimized by varying ξ+(θ0)

its covariance matrix is much more diagonal compared with the 2PCF →
more robust against numerical problems during the inversion

it is hardly affected by a B-mode contamination on small angular scales

Future work

Improve information content further by looking into other cosmic shear
statistics (e.g. ring statistics)

higher order statistics

Find better estimates for covariances (robust, unbiased)
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Ingredients for the likelihood analysis

Data vectors and covariances

calculate power spectrum Pδ for our fiducial model according to Smith et
al.2003

calculate Pκ and the data vectors ξf , 〈M2
ap〉

f
,N f

vary parameters and recalculate the data vectors ξ(π), 〈M2
ap〉(π),N (π)

for every variation

derive the covariance matrix Cξ by field to field variation from ray-tracing
simulations (Jenkins et al. 2001 for simulation details and Hamana &
Mellier 2001 for details of the ray-tracing algorithm)

calculate therefrom the covariances of 〈M2
ap〉 and N

Fiducial model

Ωm ΩΛ h Γ σ8 Ωb

0.3 0.7 0.7 0.1723 0.9 0.04
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Covariances of ξ: including B-modes

Recall

〈∆PE (¯̀)∆PB( ¯̀′)〉 = 0 → Ctot = CE + CB

〈∆ξ±(θ1) ∆ξ±(θ2)〉 =

∫ ∞

0

d` `

πA
J0/4(`θ1)J0/4(`θ2)

×

{(
PE (`) +

σ2
ε

2n

)2

+

(
PB(`) +

σ2
ε

2n

)2
}

〈∆ξ+(θ1) ∆ξ−(θ2)〉 =

∫ ∞

0

d` `

πA
J0(`θ1)J4(`θ2)

×

{(
PE (`) +

σ2
ε

2n

)2

−
(

PB(`) +
σ2

ε

2n

)2
}
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A model for PB

currently there is no model
available for B-modes

we know, B-modes occur
mainly on small scales

Our model:
PB = 0.2 PE exp

(−`B

`

)
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Difficulties I

For small θ-values CovM cannot be calculated properly from the Covξ −→
data vectors M and N start at a given θmin
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Problems with covariances again

Recalculate all data vectors taking PB into account

Calculate the covariance matrix for the correlation function where
1 CE is taken from the ray-tracing simulations
2 CB is calcualted directly from PB

Carefull: CE needs correction factor for the inversion, CB does not →

C−1
tot = (CE + CB)−1

= C−1
E − 1

trace
(
C−1

E CB

)CBC−1
E CB

calculate covariances for the two other data vectors from Cξ

calculate the posterior likelihood and plot contours
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