After Planck Era

The case for a "low-medium elle" CMB Polarisation space mission

N. Mandolesi

CMB C-elle Spectrum

Sensitivity \& Requirements

- Sensitivity: 30 times better than Planck
- Number of detectors: approximately 1000
- Galaxy to be measured with high accuracy
- Full sky Pol maps at "many" frequencies around Galactic minimum
- Angular resolution: 0.5 degree
- 4 or more Telescopes: aperture 60 cm
- Systematics: to be controlled at nanoK level

Fundamental Uncertainties

- Cosmic Variance: it cannot be overcome, but it can be dealt rigorously by using ML methods
- Galactic foregrounds is the most critical astrophysical problem
- Systematics are the real issue; understanding and measuring systematics is mandatory for any CMB experiment: it is vital for a "B" space mission

Foregrounds vs elle :
Components at 70 GHz
Violet: Total
Blue: Galactic Sync.
Red: Galactic dust
Green: Radio Galaxies (cleaned at F> 200 mJy
N. Mandolesi

TABLE 1

Bolometer ac HEMT Sengitivities

Frequency $\left[\mathrm{GH}_{7}\right]$	From Space (m010)		From Ground (2004)	
	Bolometer $\left[\mu K s^{1 / 2}\right]$	$\begin{aligned} & \mathrm{HEMT} / \sqrt{2} \\ & \left\|\mu \mathrm{~K} \mathrm{~s}^{1 / 2}\right\| \end{aligned}$	Bolometer $\left\|\mu K s^{1 / 2}\right\|$	$\begin{gathered} \mathrm{HEMT} / \sqrt{2} \\ \left\|\mu \mathrm{~K} \mathrm{\Sigma}^{1 / 2}\right\| \end{gathered}$
30	39	38	250	120
45	33	42	250	110
70	28	50	250	180
100	28	64	250	204
150	27	100	250	450
220	39	210		
350	130			

${ }^{\text {a }}$ Bolometer values from J. Bock, private communication.
${ }^{\mathrm{b}}$ The $\sqrt{2}$ in the HEMT values comes from the fact that Q and U can be measured simultaneonsly behind one fred.

2 years Sensitivity for B: 1, 0.1, 0.01 microK

GALACTIC FOREGROUNDS

- $\mathrm{T} \min (\mathrm{WMAP})=69 \mathrm{GHz}$
- P min $=80-85 \mathrm{GHz}(\mathrm{TBC})$
N. Mandolesi

Galactic foregrounds vs frequency

TABLE 2

New View	Operational Advamtages of Hewl Amays		
Bolo HEMT	Aspect	Bomometer	HEMT
Equivalent	Aray siza	Curent limit sereal hundred	Strailitfowad for tholsands
	Plysical temperature........	150.300 mK	20K
Not very different Readout circuits		Complicated crygenicic multiplexers	Room temperature circuit boards
Equivalent	Poalization modulation	Rotating waveplates, Farady y iotators	Electroni, atter mamilifation
Q and U for both	Foeal surface real extate. ${ }^{\text {a }}$	One pixal $=$ Q or U	One pixel = Q and U

HEMT: 500-1000 \$ each
Power consumption: today InP 20 mW ; in 2 yrs (Antimonide substrate) few mW

Conclusions

- A "CMB B Pol" space mission is feasible
- At "low elle" the cosmic variance dominates (if Foregrounds and Systematics perfectly removed): HEMTs \& Bolometers are equally suitable
- At "medium elle" HEMTs are appropriate if " B " is in the range 0.1 microK, Bolometers are needed if " B " is 0.01 microK

Fig. 4.1-1: Schematical representation of the architecture of the COFIS satellite. The Payload Module is attached on the PRIMA platform, which is represented by a simple box in the lowest part of the sketch. In the bottom part of the figure, three thermal radiators (V-grooves) including their mechanical support structure are represented (the concept is derived from the PLANCK satellite). A stiff hexagonal structure above the V-groove assembly supports the payload, composed by four independent telescopes and their buffles.
N. Mandolesi

Fig. 4.1-4: Schematic design of the payload architecture. Two of four optics are shown.
N. Mandolesi

Fig. 4.2-2: PRIMA structure pictorial view.
N. Mandolesi

Fig. 4.1-2: COFIS artistic view, including the PRIMA platform, the thermal radiators and the instrument buffles to shield the telescopes.

Fig. 4.1-3: COFIS artistic view including the telescope antennas and part of the mainframe.

Fig. 4.2-1: Top view of the four telescopes of COFIS.
Fig. 4.2-2: Telescope arrangement inside the COFIS payload module.

N. Mandolesi
iASF

Frequency	Number	Colour (ref. Fig. 4.2-3)
44 GHz	12	Red
70 GHz	90	Cyan
100 GHz	154	Yellow

Tab. 7-1: Frequency groups for the radiometers.

Fig. 4.2-2: Arrangement of 1000 radiometers (44, 70 and 100 GHz) on four focal surfaces.

Fig. 4.2-3: detail of the horn arrangement on one focal surface. 100 GHz horns (yellow) are in the central region, 70 (cyan) and 44 (red) $\mathbf{G H z}$ are on the boundary reagion.

N. Mandolesi

