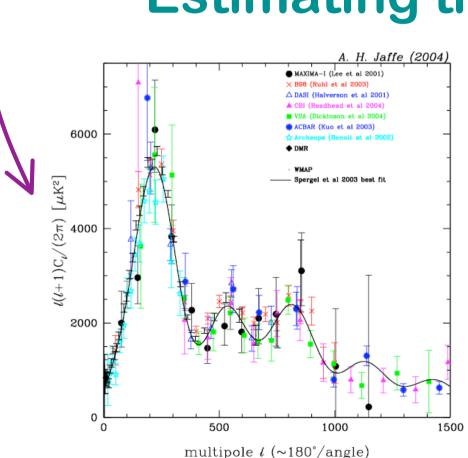


Estimating the power spectrum

Andrew Jaffe Imperial College

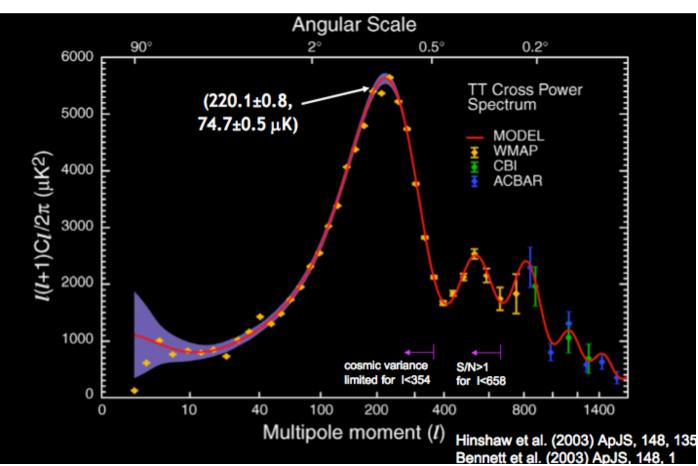
XX IAP: CMB Physics & Observation



Estimating the Power Spectrum of the CMB

• Philosophy — What is C_l ?

- Bayesian/Frequentist
- History
- Practice
 - Methods
- Future?



What is C_l ?

Sky average

$$\frac{1}{2\ell+1}\sum_{\ell}\left|a_{\ell m}\right|^{2}$$

"Ergodic" (cosmic) average

$$\left< \left| a_{\ell m} \right|^2 \right>$$

Variance of a Gaussian distribution

Variance of some other distribution

CMB Data

data = signal + noise
 d_p = s_p + n_p (p=pixel number), correlations:
 ⟨s_ps_{p'}⟩ = S_{pp'} = ∑_ℓ 2ℓ + 1/4π B_ℓ²C_ℓ (scanning temperature experiments)
 ⟨n_pn_{p'}⟩ = N_{pp'}

 Polarization: S_{pp}, is linear combination of C_l^{XX}
 Task: measure C_l (or bandpowers — Bond) and preserve all sky information for parameter estimation

Probability distributions

- □ Likelihood function $P(d_p | C_l N_{pp'}, I)$
 - probability density of data data given signal and noise variances (& information I)
- **Frequentist:**
 - underlying physical mechanism responsible for "long-run" frequency distribution of data
- Bayesian:
 - encodes information I (which may be that same physical mechanism)
- e.g., Gaussian Signal + Noise:

$$P(d \mid SNI) = \frac{1}{\left|2\pi(S+N)\right|^{1/2}} \exp\left[-\frac{1}{2}d^{T}(S+N)^{-1}d\right]$$

Frequentist methods

- Devise an "estimator" $E_l[d]$ such that $E_l[d] \sim (\text{input } C_l)$
- e.g., unbiased:

$$\langle E_{\ell} \rangle \equiv \int d^n d_p E_{\ell}[d] P(d_p | C_{\ell} N_{pp'}I) = C_{\ell}$$

- depends on likelihood as function of varying data for fixed (fiducial) C_l
- in practice, "quadratic estimators"
 - $\square \quad E_l[d] = Q_l[d] = d^T Q_l d b_l$
 - $\Box \quad \langle d^T Q_l d \rangle = \text{Tr}[(S+N)Q_l] = \sum C_l M_{ll} F_l B_l^2 + b_l \text{ in simple Gaussian case}$

Frequentist Methods (II)

Quadratic form:

$$\square E_l[d] = Q_l[d] = d^T Q_l d - b_l$$

- $\langle d^T Q_l d \rangle = \text{Tr}[(S+N)Q_l] = \sum C_l M_{ll} F_l B_l^2 + b_l \text{ in simple}$ Gaussian case
- estimate is $E_l[d] \pm \sigma_l[d]$
 - with σ_l from diagonal elements of $V_{ll'}[d] = \langle E_l E_{l'} \rangle \langle E_l \rangle \langle E_{l'} \rangle$

□ How do we use $E_l \pm \sigma_l$ for parameter estimation?

 full frequentist parameter estimation hard/ill-defined (Abroe et al, Schaefer & Stark)

Bayesian methods

- Characterize likelihood function $P(d_p | C_l N_{pp}, I)$ as function of C_l for fixed (observed) data.
- depends on use of estimate:
 - for actual " C_l estimate":
 - assign prior $P(C_l|I)$, use Bayes's theorem: $P(C|dNI) = \frac{P(C|I)P(d|CNI)}{P(d|NI)}$
 - report, e.g., mean, variance
 - □ for further parameter estimation, need full shape of $L(C_l)$ = $P(d_p|C_lNI)$ for use in Bayes's theorem estimation of parameters
 - \Box C_l prior doesn't enter "hierarchical model"

Probabilities and Entropy

- Bayesian: probabilities are primarily about information, and only secondarily about frequency
 - How do we assign a distribution based on our information?
- Entropy maximize subject to constraints
 - Gaussian has maximum entropy for given covariance
 - Uncorrelated Gaussian has maximum entropy for given variances (diagonal elements, σ_i²)
 - e.g., σ_i^2 is marginalized variance irresp. of off-diag terms
 - Gaussianity is conservative choice!

Bayesian methods: hierarchical models

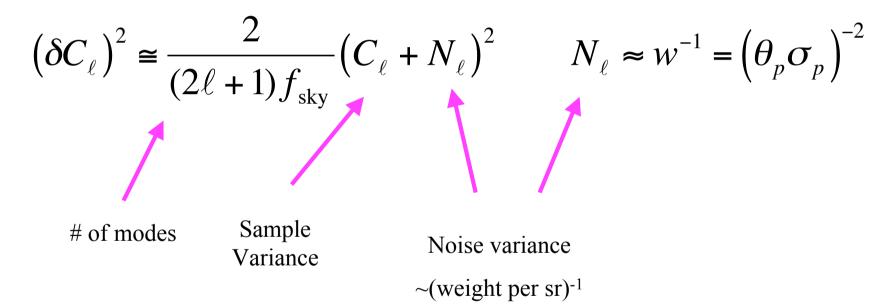
- □ Timestream (d_t) ⇒ Map $(T_p \sim d_p)$ ⇒ Spectrum $(C_l \sim d_l)$ ⇒ cosmology
- without loss of information?
- □ P(Cosmology|d_tN_{tt'}) = P(Cosmology|d_p,N_{pp'}) ≈ P(Cosmology|d₁N_{ll'},x_l)
- assume that we can calculate P(Cosmology|d_lN_{ll},x_l) even from non-Bayes estimators
- nb. Wiener filter from $P(d_p|C_l)$
 - e.g., post hoc polzn separation, prediction

Bayesian/Frequentist Correspondance

- Why do both methods seem to work?
- frequentist mean ~ likelihood maximum
 frequentist variance ~ likelihood curvature
- □ Correspondance is *exact* for
 - linear gaussian models (mapmaking)
 - variance estimation with no correlations and "iid" noise simple version of C_l problem
 - e.g., all sky, uniform noise
 - □ likelihood only function of d_{lm}^2
 - breaks down in realistic case of correlations, finite sky, varying noise
 - "asymptotic limit"
 - \frown ~ high *l* iff noise correlations not "too strong"

Expected errors

Knox 95, Hobson & Magueijo 96



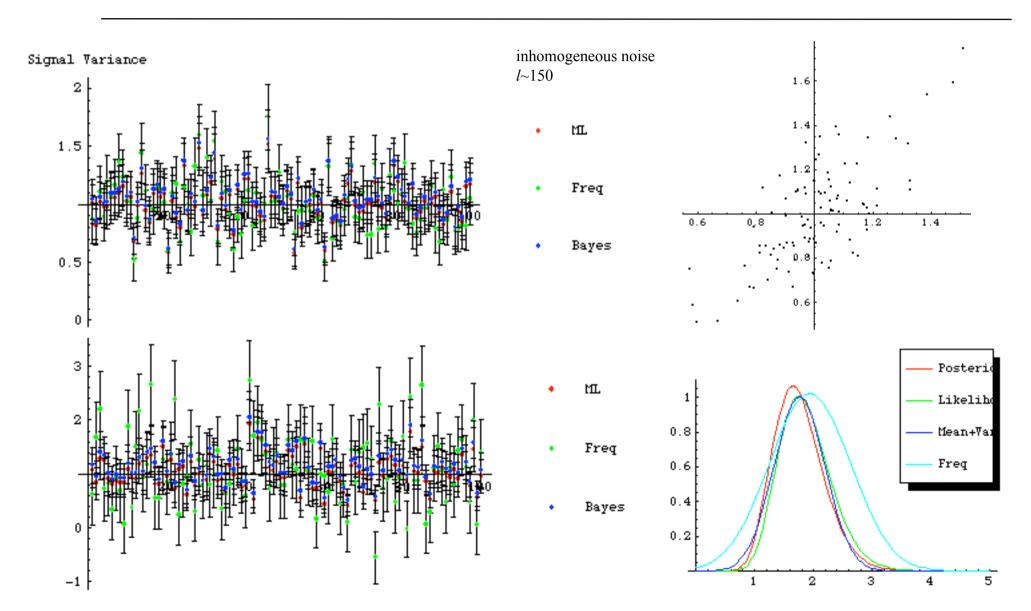
Case study

- Toy version of a single l (m = -l, ..., +l)■ $d_m = a_m + n_m$ $\langle a_m a_m \rangle = C \delta_{mm'}, \langle n_m n_m \rangle = N_{mm'}$
- Naïve Quadratic estimator

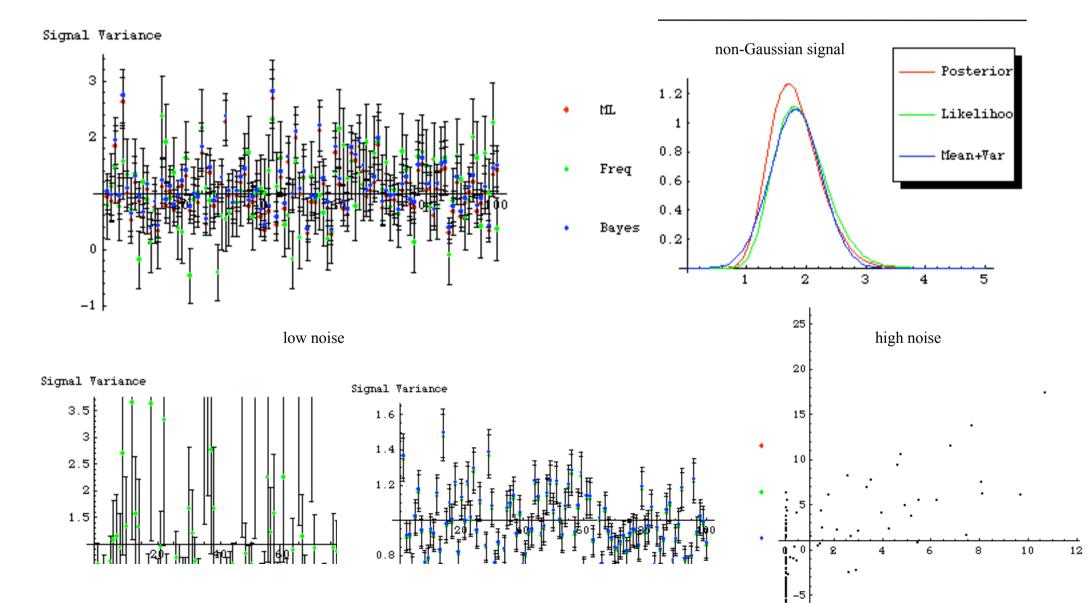
$$Q = \sum_{m} \left| d_{m} \right|^{2} - b$$

Likelihood Maximum, curvature
 Posterior mean, variance
 [with "Jefferys Prior" P(C|I) ∝ 1/C)]

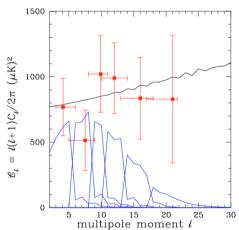
toy model — inhomogeneous noise



toy model — non-Gaussian signal

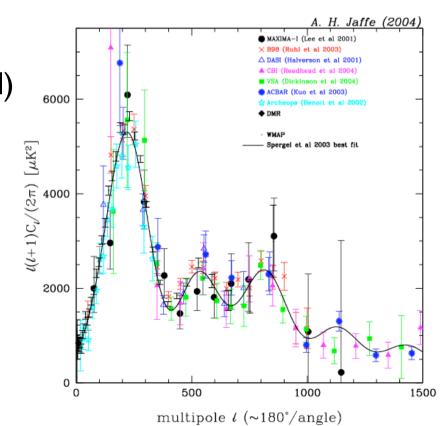


- Galaxy surveys correlation functions [e.g., Peebles], P(k) [e.g., Feldman, Kaiser & Peacock]
- DMR
 - \Box C(θ) estimation; Boughn-Cottingham; (Q_{rms-PS},n)
 - Likelihoods
 - Seljak & Bertschinger
 - Tegmark & Bunn
 - Bond forecasts, likelihoods and esp. "bandpowers"
 - Gorski
- CMB upper limits (GACF Gaussian autocorrelation function); first post-DMR experiments
 - Bandpowers: e.g., Crittenden, Bond et al (SP); Netterfield (SK)
- param. forecasts Jungman et al; Bond, Efstathiou, Tegmark



"Modern" methods

- "Optimal Quadratic" (Tegmark)
- Newton-Raphson Iteration to Likelihood Max
 - = Iterated optimal quadratic [BJK 98]
 - MADCAP (Borrill &c)
 - Interferometers (e.g. VSA: Maisinger, Hobson, et al)
- OSH Monte Carlo methods
- pseudo-C_I methods
 - MASTER
 - Gabor transforms
- SPICE
- WMAP



Bayesian methods: MADCAP/MADspec

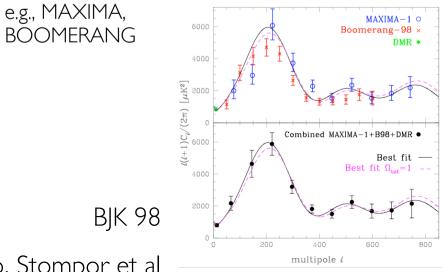
- (quasi-)Newton-Raphson iteration to Likelihood maximum
- Algorithm driven by matrix manipulation (iterated quadratic):

$$\delta C_{\ell} = \frac{1}{2} F_{ll'}^{-1} \operatorname{Tr} \left[\left(dd^{T} - C \right) \left(C^{-1} \frac{\partial C}{\partial C_{\ell}} C^{-1} \right) \right]$$
$$F_{ll'} = \frac{1}{2} \operatorname{Tr} \left[C^{-1} \frac{\partial C}{\partial C_{\ell}} C^{-1} \frac{\partial C}{\partial C_{\ell}} \right] \quad \text{Fisher matrix}$$
$$C = S + N$$

- □ Fisher = approx. Likelihood curvature
- □ full polarization: signal matrix S^{xx'}_{pp},
- Arbitrary (precomputed) noise spectrum
- Arbitrary linear filters
 - □ Stompor et al; Jaffe et al; Slosar et al

Borrill, Cantalupo, Stompor et al

- O(N³) operations naïvely (matrix manipulations), speedup to ~O(N²) for spectrum estimates (potentially large prefactor)
 - □ Fully parallelized (MPI, SCALAPACK)
 - do calculations in the natural basis
 - no explicit need for full N_{pp}, matrix in pixel basis (just noise spectrum or autocorrelation)



Monte Carlo methods: MASTER, SPICE &c

□ MASTER: quadratic pseudo-C₁ estimate

 $d_{\ell m} = \sum_{p} d_{p} w_{p} \Omega_{p} Y_{\ell m}(\hat{x}_{p})$ $\hat{C}_{\ell} = \frac{1}{2\ell + 1} \sum_{m} |d_{\ell m}|^{2}$ $\left\langle d_{\ell m} d_{\ell' m'} \right\rangle = \sum_{\ell} C_{\ell} M_{\ell \ell'} F_{\ell} B_{\ell}^{2} + N_{\ell}$

(Hivon et al) e.g., B98

takes advantage of fast SHT

SPICE: transform of correlation function estimate

(Szapudi et al; Fosalba talk)

Gabor transform: (apodized) quadratic
 + pseudo-ML for inverting Kernel

(Hansen et al)

Issues: filters, weights, noise estimation/iteration, input maps — optimal or naïve?

Hybrid Methods: FASTER

- Key insight: MASTER covariance formalism allows calculation of diagonal part of pseudo-a_{lm} covariance use for likelihood maximization
 - (nb. this has maximum entropy and so is conservative!)

Diagonal likelihood:

$$P(d_{\ell m} \mid C_{\ell} I) = \frac{1}{\left[2\pi \left\langle \hat{C}_{\ell} + N_{\ell} \right\rangle\right]^{1/2}} \exp\left[-\frac{1}{2} \frac{\left|d_{\ell m}\right|^{2}}{\left\langle \hat{C}_{\ell} + N_{\ell} \right\rangle}\right]$$

MC evaluation of means;

- Newton-Raphson iteration towards maximum
- Easy calculation of Likelihood shape parameters

B98, CBI; Contaldi et al

(related suggestions from Delabrouille et al)

WMAP: Cross-correlations

■ Take advantage of uncorrelated noise between different detectors $\langle d_p^1 d_{p'}^2 \rangle = \langle (s_p^1 + n_p^1)(s_{p'}^2 + n_{p'}^2) \rangle = S_{pp'}^{12} + N_{pp'}^{12} = S_{pp'}$

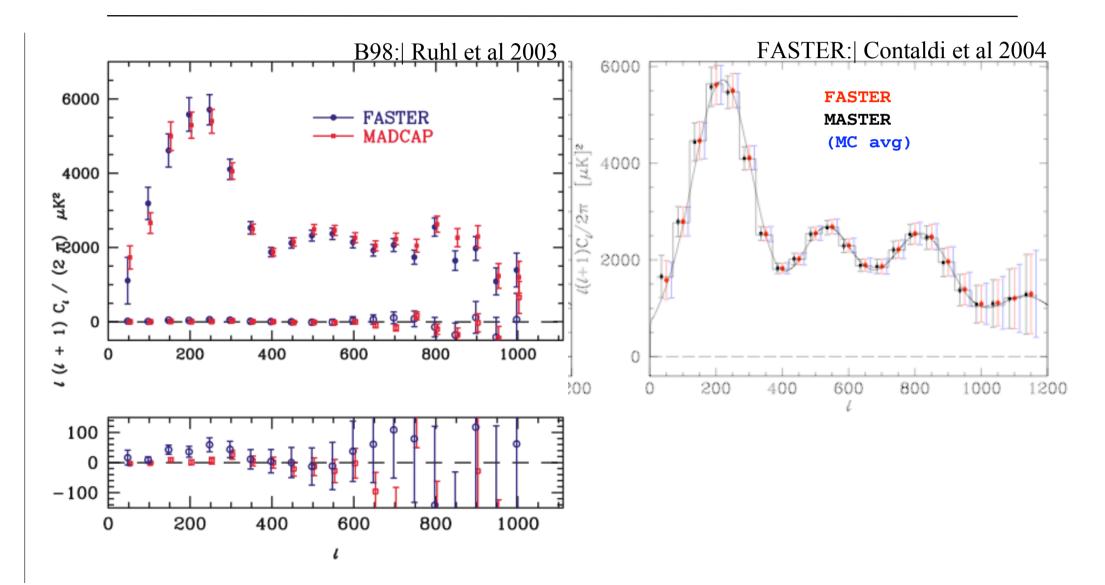
Monte Carlo method — without need for noise bias removal

(also Archeops—XSPECT; Polenta et al)

Method Miscellenea

- Efstathiou: Bayes/Frequentist discrepency potentially largest at low I — Bayes for low I, MC for high I
- Knox/Dore/Peel hierarchical quadratic estimator
- Ring/Harmonic Methods
 - Wandelt et al full pseudo- C_l likelihood
 - Challinor, van Leeuwen et al
- MCMC search for C_1 (Wandelt)

Comparisons

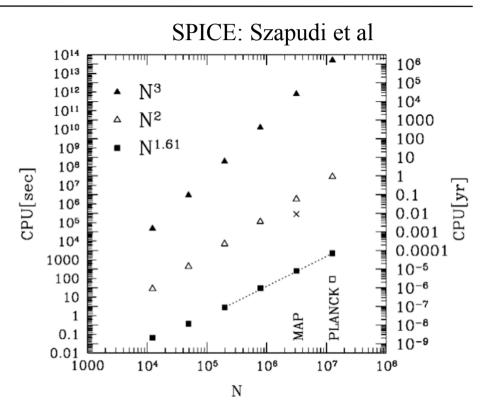


Timing and efficiency

□time

optimal/bayes: N_p³
 monte carlo: N^{1.5}
 prefactors: N_{MC}, N_{bin}, ...

TOI: 50 GB/yr @200Hz
 maps: 384 Mb @ N_{side}=2048
 noise matrix: N²/2 entries
 ~9 petabytes @ N_{side}=2048



resource management will become an issue even for cheapest methods

Polarization

■ Formally the same problem: ■ $d_p \Rightarrow (i,q,u)_p = d_{i,p} = d_q$ ■ $\langle d_q d_{q'} \rangle = N_{qq'} + S_{qq'}$ ■low S/N, large systematics ■ complicated correlations: ■ $N_{qq'}$: pixel differences ■ $S_{qq'} = S^{ij}_{qq'}$: linearly dependent on all of $C_1^{XX'}$ (X=T,E,B) ■ e.g., Seljak, Zaldarriaga; Kamionkowski, Kosowsky, Stebbins;

&c.

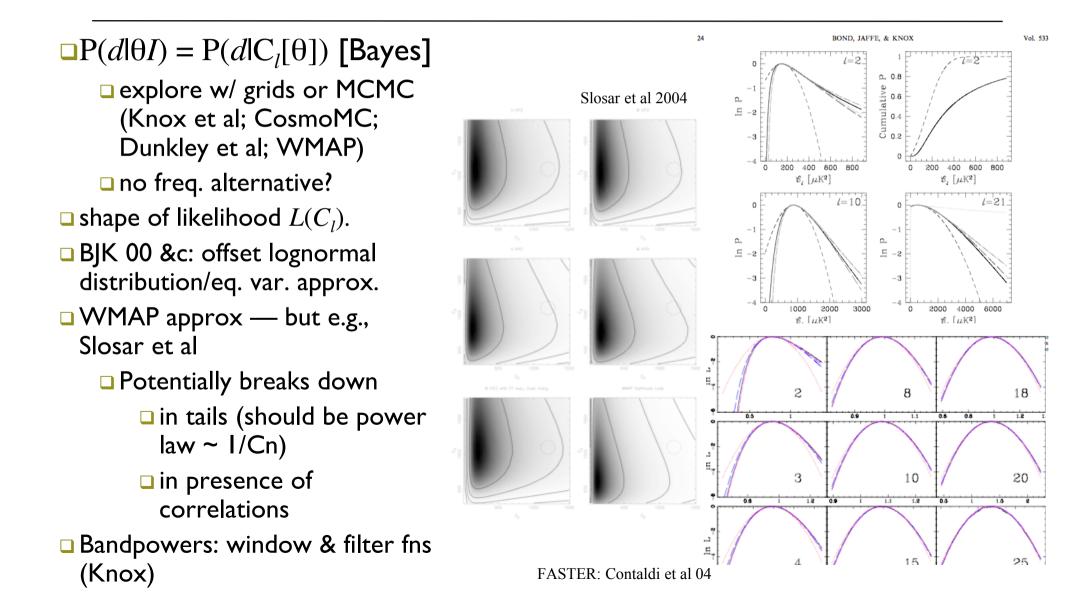
□E/B leakage (= T/E/B correlation)

- in principle, don't need extra separation step if full correlations/distributions is known
- in practice, E/B characteristics impose specific correlation structure easier to "separate"
 - e.g., Lewis talk separate at map or C₁?
 - \Box Wiener filter for map from C_I.

Interferometers

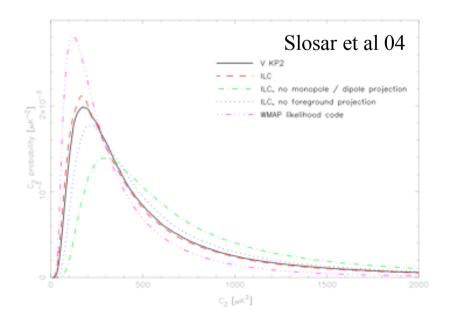
- ~Direct measurement of binned spherical harmonic components
 - great simplification: noise and signal correlations simple in the same basis
- CAT: bandpower likelihoods
- DASI, Hobson & Maisinger/VSA: Likelihood/Bayesian methods

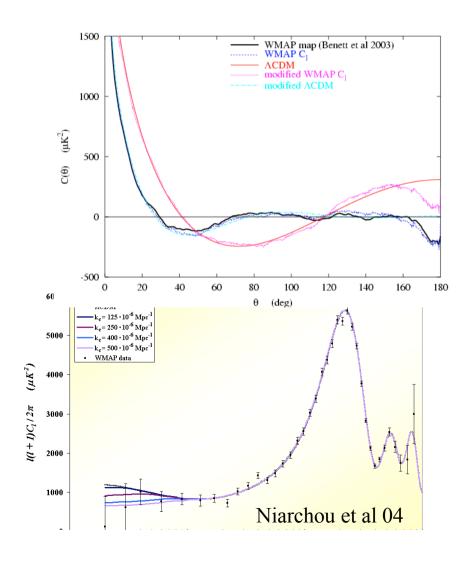
Parameter estimation from C_1



The WMAP quadrupole

- I=2,3: only 2.7σ (Bayes model comparison; see Liddle talk)
 - quadrupole, octopole alignment?
- other "anomolies"
 - I~25; first peak; C_7^{TE}





The future of C_I

Extensions:

- □ C₁ does assume *isotropy*
- Propagating noise timestream \Rightarrow maps \Rightarrow C_I \Rightarrow cosmology
 - statistics and systematics
 - MADCAP: use N(t-t'); Stompor & White; Ashdown et al: rings (Planck)
- Asymmetric beams/beam errors
- Combining results after the fact or before
- Noise estimation and errors
- Details: likelihood shape; window functions; beam/calibration error,...

Conclusions

a dozen methods out there

- Bayes/freq, Monte Carlo, correlation function, apodization, ...
- all approximations to 'optimal' Bayesian method
- all agree (in simple cases)
- for Precision Cosmology
 - compare with exact/optimal in more complicated cases
 - requires wider tests & comparisons correlations, non-Gaussianity, etc.