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Estimating the Power Spectrum of
the CMB

 Philosophy — What is Cl?
 Bayesian/Frequentist

 History
 Practice

 — Methods

 Future?



What is Cl?

 Sky average

 “Ergodic” (cosmic) average

 Variance of a Gaussian distribution

 Variance of some other distribution
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CMB Data

 data = signal + noise
 dp = sp + np  (p=pixel number), correlations:

 Polarization: Spp’ is linear combination of Cl
XX’

 Task: measure Cl (or bandpowers — Bond)
and preserve all sky information for
parameter estimation
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Probability distributions

 Likelihood function P(dp | Cl Npp’ I)
 probability density of data data given signal and noise variances

(& information I)

 Frequentist:
 underlying physical mechanism responsible for “long-run”

frequency distribution of data
 Bayesian:

 encodes information I (which may be that same physical
mechanism)

 e.g., Gaussian Signal + Noise:
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Frequentist methods

 Devise an “estimator” El[d] such that El[d]~(input Cl)
 e.g., unbiased:

 depends on likelihood as function of varying data for fixed
(fiducial) Cl

 in practice, “quadratic estimators”
 El[d] = Ql[d] = dTQld - bl

   〈dTQld〉=Tr[(S+N)Ql]=∑ClMll’FlBl
2+bl in simple Gaussian case

  

€ 
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Frequentist Methods (II)

 Quadratic form:
 El[d] = Ql[d] = dTQld - bl
   〈dTQld〉=Tr[(S+N)Ql]=∑ClMll’FlBl

2+bl in simple
Gaussian case

 estimate is El[d] ± σl[d]
 with σl from diagonal elements of

Vll’[d] = 〈El El’〉-〈El 〉〈El’〉
 How do we use El ± σl for parameter estimation?

 full frequentist parameter estimation hard/ill-defined
(Abroe et al, Schaefer & Stark)



Bayesian methods

 Characterize likelihood function P(dp | Cl Npp’ I) as
function of Cl for fixed (observed) data.

 depends on use of estimate:
 for actual “Cl estimate”:

 assign prior P(Cl|I), use Bayes’s theorem:

 report, e.g., mean, variance

 for further parameter estimation, need full shape of L(Cl )=
P(dp|ClNI) for use in Bayes’s theorem estimation of parameters
 Cl prior doesn’t enter — “hierarchical model”
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Probabilities and Entropy

 Bayesian: probabilities are primarily about
information, and only secondarily about frequency
 How do we assign a distribution based on our

information?

 Entropy — maximize subject to constraints
 Gaussian has maximum entropy for given covariance
 Uncorrelated Gaussian has maximum entropy for given

variances (diagonal elements, σi
2)

 e.g., σi
2 is marginalized variance irresp. of off-diag terms

 Gaussianity is conservative choice!



Bayesian methods:
hierarchical models

 Timestream (dt)
⇒ Map (Tp ~ dp)
⇒ Spectrum (Cl ~ dl)
⇒ cosmology

 without loss of information?

 P(Cosmology|dtNtt’) = P(Cosmology|dp,Npp’)
≈ P(Cosmology|dlNll’,xl)

 assume that we can calculate P(Cosmology|dlNll’,xl) even
from non-Bayes estimators

nb. Wiener filter from P(dp|Cl)
 e.g., post hoc polzn separation, prediction



Bayesian/Frequentist
Correspondance

 Why do both methods seem to work?
 frequentist mean ~ likelihood maximum

frequentist variance ~ likelihood curvature
 Correspondance is exact for

 linear gaussian models (mapmaking)
 variance estimation with no correlations and “iid” noise —

simple version of Cl problem
 e.g., all sky, uniform noise
 likelihood only function of dlm

2

 breaks down in realistic case of correlations, finite sky, varying noise

 “asymptotic limit”
 ~ high l iff noise correlations not “too strong”



Expected errors

 Knox 95, Hobson & Magueijo 96
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Case study

 Toy version of a single l (m = -l, …, +l)
 dm=am+nm 〈amam’〉=Cδmm’,  〈nmnm’〉=Nmm’

 Naïve Quadratic estimator

 Likelihood Maximum, curvature
 Posterior mean, variance

[with “Jefferys Prior” P(C|I) ∝ 1/C)]€ 

Q = dm
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toy model — inhomogeneous noise

inhomogeneous noise
l~150



toy model — non-Gaussian signal

  

non-Gaussian signal

 

low noise high noise



History

 Galaxy surveys — correlation functions [e.g., Peebles],
P(k) [e.g., Feldman, Kaiser & Peacock]

 DMR
 C(θ) estimation; Boughn-Cottingham; (Qrms-PS,n)
 Likelihoods

 Seljak & Bertschinger
 Tegmark & Bunn
 Bond — forecasts, likelihoods and esp. “bandpowers”
 Gorski

 CMB upper limits (GACF — Gaussian autocorrelation
function); first post-DMR experiments
 Bandpowers: e.g., Crittenden, Bond et al (SP); Netterfield (SK)

 param. forecasts — Jungman et al; Bond, Efstathiou,
Tegmark



“Modern” methods

 “Optimal Quadratic” (Tegmark)
 Newton-Raphson Iteration to Likelihood Max

= Iterated optimal quadratic [BJK 98]
 MADCAP (Borrill &c)
 Interferometers

(e.g. VSA: Maisinger, Hobson, et al)

 OSH — Monte Carlo methods
 pseudo-Cl methods

 MASTER
 Gabor transforms

 SPICE
 WMAP



Bayesian methods:
MADCAP/MADspec

 (quasi-)Newton-Raphson iteration to
Likelihood maximum

 Algorithm driven by matrix
manipulation (iterated quadratic):

 Fisher = approx. Likelihood curvature

 full polarization: signal matrix Sxx’
pp’

 Arbitrary (precomputed) noise
spectrum

 Arbitrary linear filters
 Stompor et al; Jaffe et al; Slosar et al

 O(N3) operations naïvely (matrix
manipulations), speedup to ~O(N2)
for spectrum estimates (potentially
large prefactor)
 Fully parallelized (MPI, SCALAPACK)

 do calculations in the natural basis

 no explicit need for full Npp’ matrix in
pixel basis (just noise spectrum or
autocorrelation)

 e.g., MAXIMA,
BOOMERANG
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 Fisher matrix

C = S +N

BJK 98

Borrill, Cantalupo, Stompor et al



Monte Carlo methods:
MASTER, SPICE &c

 MASTER: quadratic pseudo-Cl estimate

(Hivon et al)
 e.g., B98

takes advantage of fast SHT

 SPICE: transform of correlation function estimate
(Szapudi et al; Fosalba talk)

 Gabor transform: (apodized) quadratic
+ pseudo-ML for inverting Kernel

(Hansen et al)

 Issues: filters, weights, noise estimation/iteration, input
maps — optimal or naïve?
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Hybrid Methods:
FASTER

 Key insight: MASTER covariance formalism allows
calculation of diagonal part of pseudo-alm covariance —
use for likelihood maximization
 (nb. this has maximum entropy and so is conservative!)
 Diagonal likelihood:

 MC evaluation of means;
 Newton-Raphson iteration towards maximum
 Easy calculation of Likelihood shape parameters
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B98, CBI; Contaldi et al

(related suggestions from Delabrouille et al)



WMAP:
Cross-correlations

 Take advantage of uncorrelated noise between
different detectors

Monte Carlo method — without need for noise
bias removal

 (also Archeops—XSPECT; Polenta et al)
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Method Miscellenea

 Efstathiou: Bayes/Frequentist discrepency
potentially largest at low l — Bayes for low l, MC
for high l

 Knox/Dore/Peel — hierarchical quadratic
estimator

 Ring/Harmonic Methods
 Wandelt et al — full pseudo-Cl likelihood
 Challinor, van Leeuwen et al

 MCMC search for Cl (Wandelt)



Comparisons

B98:| Ruhl et al 2003 FASTER:| Contaldi et al 2004

FASTER
MASTER
(MC avg)



Timing and efficiency

time
optimal/bayes: Np

3

monte carlo: N1.5

prefactors: NMC, Nbin, …

Space
TOI: 50 GB/yr @200Hz
maps: 384 Mb @ Nside=2048

noise matrix: N2/2 entries
~9 petabytes @ Nside=2048

SPICE: Szapudi et al

resource management will
become an issue even for
cheapest methods



Polarization

 Formally the same problem:
dp⇒(i,q,u)p = di,p = dq

 〈dqdq’〉=Nqq’+Sqq’

low S/N, large systematics
complicated correlations:

Nqq’:  pixel differences
Sqq’=Sij

qq’ : linearly dependent
on all of Cl

XX’ (X=T,E,B)

e.g., Seljak, Zaldarriaga;
Kamionkowski, Kosowsky, Stebbins;
&c.

E/B leakage (= T/E/B correlation)
 in principle, don’t need extra

separation step if full
correlations/distributions is known

 in practice, E/B characteristics impose
specific correlation structure —
easier to “separate”

 e.g., Lewis talk — separate at map or
Cl?

 Wiener filter for map from Cl.



Interferometers

 ~Direct measurement of binned spherical
harmonic components
 great simplification: noise and signal correlations simple

in the same basis

 CAT: bandpower likelihoods
 DASI, Hobson & Maisinger/VSA:

Likelihood/Bayesian methods



Parameter estimation from Cl

P(d|θI) = P(d|Cl[θ]) [Bayes]
explore w/ grids or MCMC

(Knox et al; CosmoMC;
Dunkley et al; WMAP)

no freq. alternative?
 shape of likelihood L(Cl).
BJK 00 &c: offset lognormal

distribution/eq. var. approx.
WMAP approx — but e.g.,

Slosar et al
Potentially breaks down

 in tails (should be power
law ~ 1/Cn)

 in presence of
correlations

Bandpowers: window & filter fns
(Knox)

Slosar et al 2004

FASTER: Contaldi et al 04



 l=2,3: only 2.7σ (Bayes model
comparison; see Liddle talk)
 quadrupole, octopole

alignment?
 other “anomolies”

 l~25; first peak; C7
TE

Slosar et al 04

Niarchou et al 04

The WMAP quadrupole



The future of Cl

 Extensions:
 Cl does assume isotropy

 Propagating noise
timestream ⇒ maps ⇒ Cl ⇒ cosmology

 statistics and systematics
 MADCAP: use N(t-t’); Stompor & White; Ashdown et al: rings (Planck)

 Asymmetric beams/beam errors
 Combining results — after the fact or before
 Noise estimation and errors
 Details: likelihood shape; window functions;

beam/calibration error,…



Conclusions

 a dozen methods out there
 Bayes/freq, Monte Carlo, correlation function, apodization, …
 all approximations to ‘optimal’ Bayesian method
 all agree (in simple cases)

 for Precision Cosmology
 compare with exact/optimal in more complicated cases
 requires wider tests & comparisons — correlations, non-

Gaussianity, etc.


