

Estimating the Power Spectrum of the CMB

- Philosophy - What is C_{l} ?
- Bayesian/Frequentist
- History
- Practice
- - Methods
- Future?

What is C_{l} ?

- Sky average
$\frac{1}{2 \ell+1} \sum_{\ell}\left|a_{\ell n}\right|^{2}$
- "Ergodic" (cosmic) average $\left.\left.\langle | a_{\ell m}\right|^{2}\right\rangle$
- Variance of a Gaussian distribution
- Variance of some other distribution

CMB Data

- data $=$ signal + noise
- $d_{p}=s_{p}+n_{p}$ ($p=$ pixel number), correlations:

$$
\begin{aligned}
\left\langle s_{p} s_{p^{\prime}}\right\rangle & =S_{p p^{\prime}}=\sum_{\ell} \frac{2 \ell+1}{4 \pi} B_{\ell}^{2} C_{\ell} \quad \text { (scanning temperature experiments) } \\
\left\langle n_{p} n_{p^{\prime}}\right\rangle & =N_{p p^{\prime}}
\end{aligned}
$$

- Polarization: $S_{p p}$, is linear combination of $C_{l}{ }^{X X}$
- Task: measure C_{l} (or bandpowers - Bond) and preserve all sky information for parameter estimation

Probability distributions

- Likelihood function $\mathrm{P}\left(d_{p} \mid C_{l} N_{p p}, I\right)$
- probability density of data data given signal and noise variances (\& information l)
- Frequentist:
- underlying physical mechanism responsible for "long-run" frequency distribution of data
- Bayesian:
- encodes information I (which may be that same physical mechanism)
\square e.g., Gaussian Signal + Noise:

$$
P(d \mid S N I)=\frac{1}{|2 \pi(S+N)|^{1 / 2}} \exp \left[-\frac{1}{2} d^{T}(S+N)^{-1} d\right]
$$

Frequentist methods

- Devise an "estimator" $E_{l}[d]$ such that $E_{l}[d] \sim\left(\right.$ input $\left.C_{l}\right)$
- e.g., unbiased:

$$
\left\langle E_{\ell}\right\rangle \equiv \int d^{n} d_{p} E_{\ell}[d] P\left(d_{p} \mid C_{\ell} N_{p p^{\prime}} I\right)=C_{\ell}
$$

- depends on likelihood as function of varying data for fixed (fiducial) C_{l}
- in practice, "quadratic estimators"
- $E_{l}[d]=Q_{l}[d]=d^{T} Q_{l} d-b_{l}$
- $\left\langle d^{T} Q_{l} d\right\rangle=\operatorname{Tr}\left[(S+N) Q_{l}\right]=\sum C_{l} M_{l l} F_{l} B_{l}{ }^{2}+b_{l}$ in simple Gaussian case

Frequentist Methods (II)

- Quadratic form:
- $E_{l}[d]=Q_{l}[d]=d^{T} Q_{l} d-b_{l}$
- $\left\langle d^{T} Q_{l} d\right\rangle=\operatorname{Tr}\left[(S+N) Q_{l}\right]=\sum C_{l} M_{l l} F_{l} B_{l}{ }^{2}+b_{l}$ in simple Gaussian case
\square estimate is $E_{l}[d] \pm \sigma_{l}[d]$
- with σ_{l} from diagonal elements of

$$
V_{l l}[d]=\left\langle E_{l} E_{l}\right\rangle-\left\langle E_{l}\right\rangle\left\langle E_{l}\right\rangle
$$

\square How do we use $E_{l} \pm \sigma_{l}$ for parameter estimation?
\square full frequentist parameter estimation hard/ill-defined (Abroe et al, Schaefer \& Stark)

Bayesian methods

- Characterize likelihood function $\mathrm{P}\left(d_{p} \mid C_{l} N_{p p}, I\right)$ as function of C_{l} for fixed (observed) data.
\square depends on use of estimate:
- for actual " C_{l} estimate":
- assign prior $\mathrm{P}\left(C_{l} \mid I\right)$, use Bayes's theorem:

$$
P(C \mid d N I)=\frac{P(C \mid I) P(d \mid C N I)}{P(d \mid N I)}
$$

- report, e.g., mean, variance
- for further parameter estimation, need full shape of $L\left(C_{l}\right)=$ $\mathrm{P}\left(d_{p} \mid C_{l} N I\right)$ for use in Bayes's theorem estimation of parameters
- C_{l} prior doesn't enter - "hierarchical model"

Probabilities and Entropy

- Bayesian: probabilities are primarily about information, and only secondarily about frequency
- How do we assign a distribution based on our information?
- Entropy - maximize subject to constraints
- Gaussian has maximum entropy for given covariance
- Uncorrelated Gaussian has maximum entropy for given variances (diagonal elements, σ_{i}^{2})
\square e.g., σ_{i}^{2} is marginalized variance irresp. of off-diag terms
- Gaussianity is conservative choice!

Bayesian methods: hierarchical models

- Timestream $\left(d_{t}\right)$
$\Rightarrow \operatorname{Map}\left(T_{p} \sim d_{p}\right)$
\Rightarrow Spectrum $\left(C_{1} \sim d_{1}\right)$
\Rightarrow cosmology
b without loss of information?
$\square \mathrm{P}\left(\right.$ Cosmology $\left.\mid \mathrm{d}_{\mathrm{t}} \mathrm{N}_{\mathrm{tt}}{ }^{\prime}\right)=\mathrm{P}\left(\right.$ Cosmology $\left.\mid \mathrm{d}_{\mathrm{p}}, \mathrm{N}_{\mathrm{pP}}{ }^{\prime}\right)$
$\approx \mathrm{P}\left(\right.$ Cosmology $\left.\mid \mathrm{d}_{l}, \mathrm{~N}_{\| I}, \mathrm{X}_{1}\right)$
\square assume that we can calculate $\mathrm{P}\left(\right.$ Cosmology $\left.\mid \mathrm{d}_{l} \mathrm{~N}_{| |}, \mathrm{x}_{\mathrm{l}}\right)$ even from non-Bayes estimators
nb. Wiener filter from $P\left(d_{p} \mid C_{1}\right)$
- e.g., post hoc polzn separation, prediction

Bayesian/Frequentist Correspondance

Why do both methods seem to work?
\square frequentist mean ~ likelihood maximum frequentist variance ~ likelihood curvature

- Correspondance is exact for
- linear gaussian models (mapmaking)
\square variance estimation with no correlations and "iid" noise simple version of C_{l} problem
- e.g., all sky, uniform noise
- likelihood only function of $d_{l m}{ }^{2}$
- breaks down in realistic case of correlations, finite sky, varying noise
- "asymptotic limit"
- ~high l iff noise correlations not "too strong"

Expected errors

- Knox 95, Hobson \& Magueijo 96

$$
\begin{gathered}
\left(\delta C_{\ell}\right)^{2} \cong \frac{2}{(2 \ell+1) f_{\text {sky }}}\left(C_{\ell}+N_{\ell}\right)^{2} \quad N_{\ell} \approx w^{-1}=\left(\theta_{p} \sigma_{p}\right)^{-2} \\
\text { \# of modes } \begin{array}{c}
\text { Sample } \\
\text { Variance }
\end{array} \\
\text { Noise variance }
\end{gathered}
$$

$\sim(\text { weight per sr) })^{-1}$

Case study

- Toy version of a single $l(m=-l, \ldots,+l)$
$\square d_{m}=a_{m}+n_{m} \quad\left\langle a_{m} a_{m},\right\rangle=C \delta_{m m^{\prime}},\left\langle n_{m} n_{m},\right\rangle=N_{m m}$,
\square Naïve Quadratic estimator $\quad Q=\sum_{m}\left|d_{m}\right|^{2}-b$
- Likelihood Maximum, curvature
- Posterior mean, variance
[with "Jefferys Prior" $\mathrm{P}(C \mid I) \propto 1 / C)$]

toy model - inhomogeneous noise

toy model - non-Gaussian signal

History

- Galaxy surveys - correlation functions [e.g., Peebles], P(k) [e.g., Feldman, Kaiser \& Peacock]
- DMR
- $\mathrm{C}(\theta)$ estimation; Boughn-Cottingham; $\left(\mathrm{Q}_{\mathrm{rms}-\mathrm{Ps}}, \mathrm{n}\right)$
- Likelihoods
- Seljak \& Bertschinger
- Tegmark \& Bunn
- Bond - forecasts, likelihoods and esp. "bandpowers"

- Gorski
- CMB upper limits (GACF - Gaussian autocorrelation function); first post-DMR experiments
- Bandpowers: e.g., Crittenden, Bond et al (SP); Netterfield (SK)
- param. forecasts - Jungman et al; Bond, Efstathiou, Tegmark

"Modern" methods

- "Optimal Quadratic" (Tegmark)
- Newton-Raphson Iteration to Likelihood Max = Iterated optimal quadratic [BJK 98]
- MADCAP (Borrill \&c)
- Interferometers
(e.g. VSA: Maisinger, Hobson, et al)
- OSH - Monte Carlo methods
- pseudo-C, methods
- MASTER
- Gabor transforms
- SPICE
- WMAP

Bayesian methods: MADCAP/MADspec

- (quasi-)Newton-Raphson iteration to Likelihood maximum
- Algorithm driven by matrix manipulation (iterated quadratic):
$\delta C_{\ell}=\frac{1}{2} F_{l l^{-1}} \operatorname{Tr}\left[\left(d d^{T}-C\right)\left(C^{-1} \frac{\partial C}{\partial C_{\ell}} C^{-1}\right)\right]$
$F_{l l^{\prime}}=\frac{1}{2} \operatorname{Tr}\left[C^{-1} \frac{\partial C}{\partial C_{\ell}} C^{-1} \frac{\partial C}{\partial C_{\ell}}\right] \quad$ Fisher matrix

$$
\mathrm{C}=\mathrm{S}+\mathrm{N}
$$

- Fisher = approx. Likelihood curvature
- full polarization: signal matrix $S^{\times x{ }^{\prime}}{ }_{p p}{ }^{\prime}$
- Arbitrary (precomputed) noise spectrum
- Arbitrary linear filters
- Stompor et al; Jaffe et al; Slosar et al
- $\mathrm{O}\left(\mathrm{N}^{3}\right)$ operations naïvely (matrix manipulations), speedup to $\sim \mathrm{O}\left(\mathrm{N}^{2}\right)$ for spectrum estimates (potentially large prefactor)
- Fully parallelized (MPI, SCALAPACK)
- do calculations in the natural basis
- no explicit need for full $N_{p p^{\prime}}$ matrix in pixel basis (just noise spectrum or autocorrelation)
- e.g., MAXIMA,

BOOMERANG

BJK 98

Monte Carlo methods: MASTER, SPICE \&c

MASTER: quadratic pseudo- C_{1} estimate

$$
\begin{align*}
d_{\ell n} & =\sum_{p} d_{p} w_{p} \Omega_{p} Y_{\ell m}\left(\hat{x}_{p}\right) \\
\hat{C}_{\ell} & =\frac{1}{2 \ell+1} \sum_{m}\left|d_{\ell m}\right|^{2} \\
\left\langle d_{\ell m} d_{\ell m^{\prime}}\right\rangle & =\sum_{\ell} C_{\ell} M_{\ell \ell} F_{\ell} B_{\ell}^{2}+N_{\ell} \tag{Hivonetal}
\end{align*}
$$

e.g., B98
takes advantage of fast SHT

- SPICE: transform of correlation function estimate
(Szapudi et al; Fosalba talk)
- Gabor transform: (apodized) quadratic + pseudo-ML for inverting Kernel
- Issues: filters, weights, noise estimation/iteration, input maps - optimal or naïve?

Hybrid Methods: FASTER

- Key insight: MASTER covariance formalism allows calculation of diagonal part of pseudo- a_{lm} covariance use for likelihood maximization
- (nb. this has maximum entropy and so is conservative!)

$$
\begin{aligned}
& \text { Diagonal likelihood: } \\
& \qquad P\left(d_{\ell m} \mid C_{\ell} I\right)=\frac{1}{\left[2 \pi\left\langle\hat{C}_{\ell}+N_{\ell}\right\rangle\right]^{1 / 2}} \exp \left[-\frac{1}{2} \frac{\left|d_{\ell m}\right|^{2}}{\left\langle\hat{C}_{\ell}+N_{\ell}\right\rangle}\right]
\end{aligned}
$$

- MC evaluation of means;
- Newton-Raphson iteration towards maximum
- Easy calculation of Likelihood shape parameters

Cross-correlations

- Take advantage of uncorrelated noise between different detectors
$\left\langle d_{p}^{1} d_{p^{\prime}}^{2}\right\rangle=\left\langle\left(s_{p}^{1}+n_{p}^{1}\right)\left(s_{p^{\prime}}^{2}+n_{p^{\prime}}^{2}\right)\right\rangle=S_{p p^{\prime}}^{12}+\not \not \chi_{p p^{\prime}}^{12}=S_{p p^{\prime}}$
Monte Carlo method - without need for noise bias removal
- (also Archeops-XSPECT; Polenta et al)

Method Miscellenea

- Efstathiou: Bayes/Frequentist discrepency potentially largest at low I - Bayes for low I, MC for high I
- Knox/Dore/Peel - hierarchical quadratic estimator
- Ring/Harmonic Methods
- Wandelt et al - full pseudo-C, likelihood
- Challinor, van Leeuwen et al
- MCMC search for C_{l} (Wandelt)

Comparisons

Timing and efficiency

\square time

-optimal/bayes: $\mathrm{N}_{\mathrm{p}}{ }^{3}$
amonte carlo: $\mathrm{N}^{1.5}$
aprefactors: $\mathrm{N}_{\mathrm{MC}}, \mathrm{N}_{\mathrm{bin}}, \ldots$
\square Space
-TOI: 50 GB/yr @200Hz
-maps: $384 \mathrm{Mb} @ \mathrm{~N}_{\text {side }}=2048$
unoise matrix: $\mathrm{N}^{2} / 2$ entries
~ 9 petabytes @ $\mathrm{N}_{\text {side }}=2048$

resource management will become an issue even for cheapest methods

Polarization

\square Formally the same problem:
$\square d_{p} \Rightarrow(i, q, u)_{p}=d_{i, p}=d_{q}$
$\square\left\langle\mathrm{d}_{\mathrm{q}} \mathrm{d}_{\mathrm{q}},\right\rangle=\mathrm{N}_{\mathrm{qq}}{ }^{\prime}+\mathrm{S}_{\mathrm{qq}}$,
-low S / N, large systematics
acomplicated correlations:
$\square \mathrm{N}_{\mathrm{qq}}$: pixel differences
$\square \mathrm{S}_{\mathrm{qq}}=\mathrm{S}_{\mathrm{qq}}{ }_{q \mathrm{q}}$: linearly dependent on all of $C_{1}{ }^{X X}(X=T, E, B)$
-e.g., Seljak, Zaldarriaga;
Kamionkowski, Kosowsky, Stebbins; \&c.

$\square E / B$ leakage ($=T / E / B$ correlation)
\square in principle, don't need extra separation step if full correlations/distributions is known
\square in practice, E/B characteristics impose specific correlation structure easier to "separate"

- e.g., Lewis talk - separate at map or C?
- Wiener filter for map from C_{1}.

Interferometers

- \sim Direct measurement of binned spherical harmonic components
\square great simplification: noise and signal correlations simple in the same basis
- CAT: bandpower likelihoods
- DASI, Hobson \& Maisinger/VSA:

Likelihood/Bayesian methods

Parameter estimation from $C_{\text {/ }}$

$\Delta \mathrm{P}(d \mid \theta I)=\mathrm{P}\left(d \mid \mathrm{C}_{l}[\theta]\right)$ [Bayes]

- explore w/ grids or MCMC (Knox et al; CosmoMC; Dunkley et al; WMAP) \square no freq. alternative?
\square shape of likelihood $L\left(C_{l}\right)$.
\square BJK 00 \&c: offset lognormal distribution/eq. var. approx.
\square WMAP approx — but e.g., Slosar et al
\square Potentially breaks down \square in tails (should be power law ~ I/Cn)
\square in presence of correlations
\square Bandpowers: window \& filter fns (Knox)

Slosar et al 2004

The WMAP quadrupole

- $I=2,3$: only 2.7o (Bayes model comparison; see Liddle talk) \square quadrupole, octopole alignment?
- other "anomolies"
- $1 \sim 25$; first peak; $\mathrm{C}_{7}{ }^{\text {TE }}$

The future of $\mathrm{C}_{\text {, }}$

- Extensions:
- C_{1} does assume isotropy
- Propagating noise
timestream \Rightarrow maps $\Rightarrow C_{1} \Rightarrow$ cosmology
\square statistics and systematics
- MADCAP: use N(t-t'); Stompor \& White; Ashdown et al: rings (Planck)
- Asymmetric beams/beam errors
- Combining results - after the fact or before
- Noise estimation and errors
- Details: likelihood shape; window functions; beam/calibration error,...

Conclusions

- a dozen methods out there
- Bayes/freq, Monte Carlo, correlation function, apodization, ...
- all approximations to 'optimal' Bayesian method
- all agree (in simple cases)
- for Precision Cosmology
- compare with exact/optimal in more complicated cases
- requires wider tests \& comparisons - correlations, nonGaussianity, etc.

