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1. Introduction

m Detection of compact signals embedded 1n a background
m extragalactic point sources (EPS) in pwave frequencies.

s CMB maps: mixture of components such as CMB, Galactic
dust, synchrotron, free-free, compact sources, etc.

m Difficult to separate EPS due to their unknown frequency
dependence.

m Common approach: filtering and thresholding

In this approach: filtering and detection are independent
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m  Other filtering based
= Mexican Hat wavelet (Cayon et al. 2000, Vielva et al. 2001)
s Matched Filter (Tegmark and Oliveira-Costa 2002)
m Adaptive Top Hat Filter (Chiang et al. 2002)
m Scale-adaptive Filter (Sanz et al. 2001).

It is not clear which one, if any, is optimal

= Our approach:
m filtering and detection are not independent.
= the goal of filtering is to transform the data in

such a way that the detector performs better.

m Criterion is:

Find a combination of optimal filter and detector such that the number
of detections 1s maximum for a fixed number of spurious sources.



2. The Filters:

m  Biparametric Scale Adaptive filter (BSAF)

P o x7e_ixz (1+cx2} X = aqR

= BSAF => combination of MF + MHW for y = 0.

m Conditions to obtain it:

m  <w(R,0)>=A unbiased estimator of the amplitude

m  The variance of w(R,0) has a minimum at R,

m  w(R,,b) has a maximum in the filtered image at b=0

m  Power spectrum P(q)=Dq?, v spectral index of background.

s The BSAF has two free parameters ¢ and @,
m c: arbitrary parameter

m o o >0, modifies the filtering scale R.



N Filtering at other scales than R can improve detections
= MHW (Vielva et al. 2001)
=  MF (Lopez-Caniego et al. 2004)

N Following this idea, we introduce o in the other filters.

m  The Filters:
MFE -

SAF -

MHW -

BSAF




3. The Detector

m Optimality & Concept of detection.
m Was there a signal at the input of the recetver?
m Not obvious => Signal corrupted by the “noise”

m The detecror: use the information in terms of pdf's

H,: null hypothesis => background alone
H;: alternate hypothesis => background + signal

s The detector divides the space R in 2:

R.: Hyis rejected ey A signal is present

R: H,isaccepted mmmmmp No signal is present

R. Is the region of acceptance



m A simple detector is thresholding. The space R is defined by the
objects above/below an arbitrary threshold, noc.

hlgh threshold ) small number of detections

low threshold — many detections with a high
probability of sputious.

Are there any detectors that include more information than thresholding?

It will be shown the importance of introducing the curvature
of the maxima in the detector because allows to distinguise
between maxima of the background and maxima of the
background + source..



s Our approach:
m calculate the region of acceptance

® look for maxima

= apply the detector

m The detector: obtained with the Neyman-Person rule

taking into account the balance two types of errors:
: : o is the probability of accepting an
Type |I: Spurious detection  mp-

event when a signal was not present.

Type II: False dismissal  — 1-B 1s the probability of rejecting an

event when a signal was present.

The acceptance region R, giving the highest number density of
detections n*, for a given number density of spurious n*,, is the region

If L>L* => signal is present
If L<L* => signal is absent




Background

1D background represented by a Gaussian random field ¢(x) with
average value <&(x)>=0 and power spectrum P(q).

®  The distribution of maxima of the background (Rice 1954).
m  The expected number of maxima

Local Source
m  The expected number density of maxima given a gaussian source

of amplitude A is given by (Barreiro et al. 2003):
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Real and spurious detections

In any region R.: the number density of spurious and real detections:

n, = JR*dU dx n,(v,x)

n’ :J‘R*du dx n(v, x), n(u,lc):‘(‘)‘duS n(v,x | v,)

R, is given by the detector L. = L*, or equivalently by ¢ = ¢*, where

I

The detector is linear and independent of the pdf’s



4. Numerical results

m Application to the detection of compact sources characterized by a
Gaussian profile in backgrounds q7.

= We want to detect very weak sources [0,1.5] before fitering

m We use two a priori distributions of sources

m Uniform Distribution

= [0,2]c after filtering

m Scale-Free Distribution e P (V) lﬂ,u c [Uan L ﬁn]
= [0.5,3]c after filtering v,
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Uniform Distribution [0,2]c
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Scale-free Distribution [0.5,3]c
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5. Simulations

1D images with a Gaussian background and white noise P(q)
Point sources distributed following an uniform distribution.

Our simulated images:
= Size: 4096 pixels.
= White noise dispersion: unity.
m R=3 pixels for the added source.

The size of the image is such, that the addition of the source
does not modify the previous dispersion in a significant way.

Each image is filtered with the MFF and BSAF.

= O, defines the acceptance region and is obtained from the images.
m From the obsetrvables, A, K and 62, we calculate for each peak .

¢ > O, # of detections



Simulations
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Results for 2D case
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6. Conclusions

m  Filtering based detection criterion:
B New filter; BSAF. Includes the other filters for white noise.

m  New detector: Bayesian Neyman-Pearson rule with « priorz
information of the source distribution and number densities of
maxima that includes amplitude and curvature information.

m The curvature plays an important role defining the acceptance region.

m BSAF + detector significant improvement for v [0,2]
m White noise: the BSAF improves the standard MF 40%.

m  Similar results with two distributions. Tested with simulations.

m 2D: 40 % improvement for white noise.
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