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Motivation
Use of scattering of Cosmic Microwave Background photons
by atomic or ionic (fine-structure transitions), or molecular
(rotational transitions) lines to detect the abundance of the
scattering species

Good thing: The effect is stronger than expected at first
(proportional to τ , not τ 2, where τ ¿ 1) due to correlation
with the primordial CMB anisotropies

Bad thing: Still signal is very weak, hidden under various
foregrounds

Aim: To constrain enrichment and ionization history of the
universe by this new technique
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Motivation

Previous works...

• Dubrovich (1977,1993), de Bernardis et al. (1993)

primordial molecules (particularly LiH)

• Maoli, Melchiorri, Tosti et al. (1996) primordial molecules

• Loeb (2001), Zaldarriaga & Loeb (2002) neutral Li

CMB & FS lines...

• Varshalovich, Khersonskii & Sunyaev (1981)

scattering in FS lines to equalize Tm and Trad at z < 150

FS lines in emission...

• Suginohara & Spergel (1999)
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Overview of talk

• Basic idea – CMB & resonant scattering

• Method of analysis

• Properties of the signal

• Ionization and enrichment histories

• Effect of overdensity

• Effect of foreground emissions

• Conclusions
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Basic Idea
Metallicity evolution of the universe must leave its imprint on
the Cosmic Microwave Background Radiation ⇒ through
resonance scattering of the background photons by atoms,
ions and molecules

� � �� � �� � �
� � �� � �� � �

We wish to know about

the state of inter-

vening medium using

the very well-understood

background light: CMB!
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Suppression & generation
Resonant scattering partially erase the original temperature
anisotropies of the CMB, but also generates new fluctuations
at the epoch of scattering
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Suppression & generation
Resonant scattering partially erase the original temperature
anisotropies of the CMB, but also generates new fluctuations
at the epoch of scattering
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Fine-structure lines
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Fine-structure lines

C +

2325
2329

2324
2328

2323

A

A

A
o

o

o

P

P
02

4
P

P

2

2

3

1

2

2

157.7 µ

2326

A-coefficient ∼ 10−6 s−1

⇒ optical depth ∼ 10−5 − 10−7

CMB photon

z ~ 4Planck HFI
Bandwidth ~ 25%

LSS
at  z=1100

353  GHz

CMB & Metal Enrichment – IAP Paris – 1 July 2004 – p.6/14



Fine-structure lines
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Fine-structure lines

COBE showed that C+ FS line is the brightest cooling line in our Galaxy!
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Proposition
• Method to determine the abundance of atoms, ions and
molecules in low density optically thin regions of the
universe by using the signature of resonant scattering of
CMB photons
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Proposition
• Method to determine the abundance of atoms, ions and
molecules in low density optically thin regions of the
universe by using the signature of resonant scattering of
CMB photons

• Focusing on Planck HFI, also ACT, SPT, APEX...

• Frequency dependent optical depth (τν) – different
signal in different channels

• Possible to avoid the limit imposed by cosmic variance
by comparing results from different channels

• Strong constraints on the abundance of scattering
species (10−2 − 10−4 solar fraction), e.g. C, N, O, Si, S
and Fe, in the redshift range 1 < z < 50
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Proposition
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Formalism
The change in observed temperature anisotropies...

∆Tobs(ν) = (1− τν)∆Torig + τν∆T lin
new + O(τ2ν )

can be expressed as a change in angular power spectrum
multipoles

δCl(ν) = τν · C1(ν) + τ2ν · C2(ν) +O(τ
3
ν )
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Formalism
The change in observed temperature anisotropies...

∆Tobs(ν) = (1− τν)∆Torig + τν∆T lin
new + O(τ2ν )

can be expressed as a change in angular power spectrum
multipoles

δCl(ν) = τν · C1(ν) + τ2ν · C2(ν) +O(τ
3
ν )

giving a linear relation between abundance and power
spectrum distortion

[abundance] ∝ τν ≈
δCl

C1
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Formalism
Expected uncertainty in the obtained Cl-s

σ2Cl
=

2

(2l + 1)fsky

(
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)2

with Cosmic Variance and Pixel Noise
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N
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)
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Formalism
Expected uncertainty in the obtained Cl-s
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=

2
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Minimum abundances

Minimum detectable abundance for selected atoms and ions

Atom / Fine-Str. HFI freq. Scattering Opt. depth for Min. Abundance

Ion line (GHz) redshift 10−2 Sol. abun. detectable (solar)

C II 157.74µ 143 12.3 1.6× 10−5 6.2× 10−3

217 7.9 1.1× 10−5 3.0× 10−3

353 4.4 5.6× 10−6 3.6× 10−2

N II 205.30µ 143 9.2 8.9× 10−6 2.6× 10−3

217 5.8 6.5× 10−6 3.8× 10−3

353 3.1 3.5× 10−6 6.8× 10−2

O I 63.18µ 143 32.2 1.1× 10−4 1.7× 10−4

217 21.2 6.3× 10−5 6.4× 10−4

353 12.5 3.1× 10−5 4.9× 10−2

O III 88.36µ 143 22.8 1.8× 10−4 1.2× 10−4

217 14.8 1.4× 10−4 1.8× 10−3

353 8.6 7.4× 10−5 4.4× 10−3
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Minimum abundances

Minimum detectable abundance for CO molecules with LFI 100 GHz

J′→J′′ Wavelength (µ) z Scatter. τ for 10−2[C]¯ Min. Abundance

0 → 1 2600.78 0.2 4.6× 10−5 2.3× 10−3

1 → 2 1300.41 1.3 9.0× 10−5 2.0× 10−3
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Nature of distortions
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The resultant temperature anisotropy is a combination

of suppression and generation terms...
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Nature of distortions

0.01

0.1

1

10 100 1000

l(l
+1

)/2
π 

|δ
C

l|

multipole, l

z=5suppression
monopole

doppler

0.01

0.1

1

10 100 1000

l(l
+1

)/2
π 

|δ
C

l|

multipole, l

z=100suppression
monopole

doppler

Velocity term grows with

time, monopole term dies

0.01

0.1

1

10 100 1000
l(l

+1
)/2

π 
|δ

C
l|

multipole, l

z=25suppression
monopole

doppler

The suppression term

remains the same

CMB & Metal Enrichment – IAP Paris – 1 July 2004 – p.10/14
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Nature of distortions

At small angular scales (l & 200), we have simply δCl ' − 2 τXi
C
prim.
l

making prediction of effect very easy for ground-based experiments!
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Ionization & enrichment histories
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Ionization & enrichment histories
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Ionization & enrichment histories
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Effect of overdensity
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If density is high, collision with electrons (also H, He,..) will
reduce the number of atoms/ions in the ground level, thereby
decreasing the optical depth in scattering
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Effect of overdensity
For a two-level system:
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Effect of overdensity

Proposed method detects effect of scattering in the
low-density optically thin gas, with overdensity δ < 103-104

There is simultaneous effect of free-free, line and dust
emission from non-uniformly distributed regions with huge
over-density, where active star formation is taking place

These two effects are independent and complimentary,
producing simultaneous distortions in the angular power
spectrum of CMB in different angular scales
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Effect of overdensity
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Effect of overdensity
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Effect of foregrounds
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The picture is not so simple because of foregrounds!
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Effect of foregrounds
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Effect of foregrounds
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Conclusions
• Method to detect abundances in the low-density
optically thin gas everywhere in the universe

• Might set a way to infer the existence of the“missing”
baryons, in the form of moderate (T ∼ 104 K) or low
(T > TCMB(z)) temperature IGM at high redshifts

• A wide range of abundances (10−2 − 10−4 solar fraction)
can be probed for the very important metals like C, N,
and O in the most important redshift range 1 < z < 50

• Possibility to constrain ionization and enrichment history
with already available detector technologies

• Presence of foregrounds is a problem, but in principle
they can be removed to obtain clean CMB maps
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Basu, Hernández & Sunyaev, A&A 2004, 416, 447-466
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