CMB Physics and Observation — 20th IAP Meeting — June 28—July 2, 2004

The Background/Foreground of Infrared Galaxies *Outline of Talk*

- The Cosmic Infrared Background
- Breaking the CIRB into sources : counts with ISOCAM & ISOPHOT (ISO), SCUBA (JC MT), MAMBO (IRAM)
- Properties of IR/submm galaxies : redshift distributions, luminosities, SFR, clustering, etc.
- A word on SPITZER
- Models: phenomenological and Hierarchical Galaxy Formation
- Forthcoming observational landscape with PLANCK and HERSCHEL 2

Observation of IR/submm Galaxies and Cosmology ?

- The observation of the Cosmic IR Background is necessary for the complete test of Olbers' paradox.
- The objects that contribute to the CIRB may be the progenitors of local elliptical galaxies (test Hierarchical Galaxy Formation).
- The *background* due to dusty galaxies is a *foreground* for the observation of CMB anisotropies.
- Early phenomena (e.g. the formation of Pop III stars) are observed in the IR (redshifts z=10-30).

The CIRB

Locally, 30 % of bolometric luminosity emitted in IR. ULIRGs contribute only 2 % of local IR luminosity density The IR luminosity sequence from spirals to LIRGs $(10^{11}-10^{12} L_{sun,})$ interacting) and ULIRGs $(>10^{12} L_{sun})$ mergers, starburst powered for $< 3 \ 10^{12} L_{sun}$

Morphologies of ULIRGs (Surace et al. 1998)

Black Hole Growth and the Cosmic Background

$$I_{bol} = \frac{c}{4\pi} \eta_{BH} \int \frac{\not X_{BH} c^2}{1+z} dt = \frac{c}{4\pi} \frac{0.1 \rho_{BH}(0) c^2}{1+z_{eff}}$$

Census of BH mass density from the local luminosity density :

Stellar Nucleosynthesis and the Cosmic Background

$$I_{bol} = \frac{c}{4\pi} \left(\frac{\Delta Y}{\Delta Z} \eta_Y + \eta_Z \right) \int \frac{\not Z_Z c^2}{1+z} dt = \frac{c}{4\pi} \frac{0.03\rho_Z(0)c^2}{1+z_{eff}}$$

Census of local metal density from the local luminosity density :

$$\rho_B(0) = (9.0 \pm 1.4) 10^7 L_{Bsun} Mpc^{-3}$$

2/3 from Sp;
$$\frac{M}{L_B} = 2\frac{M_{sun}}{L_{Bsun}}$$
 and $Z \approx 0.02$
1/3 from E; $\frac{M}{L_B} = 6\frac{M_{sun}}{L_{Bsun}}$ and $Z \approx 0.03 + 0.02$ for metals in IGM
 $\frac{M_Z}{L_B} = 0.3\frac{M_{sun}}{L_{Bsun}}$ (Mushotzky & Loewenstein 1997)
 $\rho_Z(0) = 1.1 \times 10^7 M_{sun} Mpc^{-3}$
 $I_{bol} = \frac{50}{1 + z_{eff}} 10^{-9} Wm^{-2} sr^{-1}$
 $z_{eff} \approx 1.5 \longrightarrow I_{bol} = 20 \times 10^{-9} Wm^{-2} sr^{-1} s$

The Cosmic Star Formation History

Gispert et al. 2000, Chary & Elbaz 2001, etc.

CIRB fluctuations in ISO (170 μm) and IRAS (60 & 100 μm) surveys

Lagache & Puget 2000, Matsuhara et al. 2000, Miville-Deschenes et al. 2003¹⁰

Faint Galaxy Counts

Breaking the CIRB into sources

•ISOCAM (15 μ m) : 70 % @ S_v>30 μ Jy •ISOPHOT (175 μ m) : 5 % @ S_v>200 mJy (Puget et al. 1999, Dole et al. 2000)

•JCMT/SCUBA (850 μ m) : 40 to 80 % @ S_v>2 mJy to 0.3 mJy (Smail et al. 1997, Hughes et al. 1998, Eales et al. 1998, Cowie et al. 2002, etc.)

•IRAM/MAMBO (1200 μm) : 30 % @ S_v>2 mJy (Carilli et al. 2000, Bertoldi et al. 2000)

SOPHO

Galaxies detected by ISOCAM at 15 μ m (> 30 μ Jy) at z ~ 0.8 should contribute significantly to the CIRB at 140 μ m

From Elbaz and Cesarsky 2003

Guiderdoni et al. 1998

limit: 2.9 deg⁻² @ 100 mJy, Barnard et al. 2004

ID of SCUBA sources : radio continuum

VLA 1.4 GHz contours

SCUBA error box

Radio/submm « photometric » redshifts (Carilli & Yun 1999) give <z> > 2

Smail et al. 2000

21

No connection between the SCUBA and Chandra sources at S_{850mm} >2 mJy & $F_{0.5}$ _ $_{2keV}$ >1—3 10⁻¹⁵ erg cm⁻² s⁻¹

Most natural interpretation : SCUBA sources are powered by starbursts

Fabian et al. 2000, Severgnini et al. 2000, Almaini et al. 2003, Waskett et al. 2003

The clustering of SCUBA sources is not detected

But SCUBA sources are located in same structures as Chandra X-ray sources

Borys et al. 2003

24

Morphologies of optical counterparts of submm sources

Optical counterparts of 18 MAMBO 1.2mm sources (Dannerbauer et al. 2004)

2/3 of sample at z>2.5

Low values of 850/1200 μ m ratio suggest sources are even at z>3, or that $\beta=1$ rather than 2 (Eales et al. 2003) 26

Models

Recent models of faint counts in the IR/submm

- Phenomenological models: Chary & Elbaz 2001, Rowan-Robinson 2001, Serjeant & Harrison 2002, Lagache et al. 2003, King & Rowan-Robinson 2003, etc.
- <u>Spectrophotometric evolution of stellar populations:</u> Toffolatti et al. 1998, Franceschini et al. 1998, 2001, etc.
- Hierarchical Galaxy Formation: Guiderdoni et al. 1997, 1998, Devriendt & Guiderdoni 2000, Lacey et al. 2003, Devriendt et al. 2003, Hatton et al. 2003, Baugh et al. 2004, etc.

Galaxy SEDs

Evolving LF to Fit Data

"IAS", Lagache, Dole, Puget, 2003, MNRAS

Source Counts

"IAS", Lagache, Dole, Puget, 2003, MNRAS

CIRB Intensity & Fluctuations

$\lambda~(\mu { m m})$	S_{max} (mJy)	Observations (Jy^2/sr)	References	Model (Jy^2/sr)
170	1000	$\sim \! 25000$	Sorel et al., in prep	23694
170	250	$13000{\pm}3000$	Matsuhara et al. 2000	15644
170	100	7400	Lagache & Puget 2000	11629
100	700*	$5800{\pm}1000$	Miville-Deschênes et al. 2002	10307
90	150	$12000{\pm}2000$	Matsuhara et al. 2000	5290
60	1000	1600 ± 300	Miville-Deschênes et al. 2002	2507

"IAS", Lagache, Dole, Puget, 2003, MNRAS

Predicted IR/submm counts with simple SAM

Devriendt & Guiderdoni 2000

The "hybrid" approach : GalICS (*Galaxies in Cosmological Simulations*); see http://galics.iap.fr

37

ULIRGS (L_{IR} >10¹² L_{sun}), LIRGS (10¹²> L_{IR} >10¹¹ L_{sun}), and mild starbursts (10¹¹ L_{sun} > L_{IR}), in 1/10th of a 150 Mpc box, at z=3

ULIRGS (L_{IR} >10¹² L_{sun}), LIRGS (10¹²> L_{IR} >10¹¹ L_{sun}), and mild starbursts (10¹¹ L_{sun} > L_{IR}), in 1/10th of a 150 Mpc box, at z=2

ULIRGS (L_{IR} >10¹² L_{sun}), LIRGS (10¹²> L_{IR} >10¹¹ L_{sun}), and mild starbursts (10¹¹ L_{sun} > L_{IR}), in 1/10th of a 150 Mpc box, at z=1

 $\begin{array}{l} ULIRGs \ (L_{IR} > 10^{12} L_{sun}), LIRGs \\ (10^{12} > L_{IR} > 10^{11} L_{sun}), \ and \ mild \\ starbursts \ (10^{11} L_{sun} > L_{IR}), \ in \ 1/10^{th} \ of \\ a \ 150 \ Mpc \ box, \ at \ z=0 \end{array}$

Planck and Herschel

Planck CSC will get local (z~0.1) LIRGs/ULIRGs sources, and rare HyLIRG (if any).

Herschel Deep Surveys will get ULIRGs up to z ~3.

S_{lim} (in Jy)

λ (μ m)	5σ _{inst} (mJy)	5σ _{conf} (mJy)	5 <i>σ_{add}</i> (mJy)	$5\sigma_{tot}$ (mJy)	$N_{cold}(S > 5\sigma_{tot})$ (/sr)	$\begin{array}{c} \mathrm{N}_{SB}(\mathrm{S}{>}5\sigma_{tot}) \\ (/\mathrm{sr}) \end{array}$	${f N(S>5\sigma_{tot})}\ (/{ m sr})$
350	216.5	447	0	497	1342	40	1382
550	219	200	7.9	297	187	15	202
850	97	79.4	3.2	125	72	8	80
1380	57.5	22.4	2.6	62	35	4	39
2097	41.5	11.2	2.4	43	23	3	26

Planck HFI number counts

Herschel SPIRE Survey @ 350 mm

Surface (Sq. Deg.)	5σ _{inst} (mJy)	5σ _{conf} (mJy)	5 σ_{tot} (mJy)	Days	Number of sources	% resolved CIB
400	100	28.2^{1}	103.9	18	4768	1
100	15.3	22.4	27 .1	192	33451	6.7
8	7.5	22.4	23.6	64	3533	7.8

IAS model, Lagache et al.

High-redshift sources contribute Planck IR Foreground intensity and fluctuations

Lagache et al.

46

Higher wavelengths probe higher redshifts

Lagache et al. 47

Predicted Planck CSC

λ	S _{lim} (Mexican	N(> S _{lim})	N(> S _{lim})	N(> S _{lim})
In um	Hat Wavelet)	$4\pi \mathrm{sr}$	4π sr	$4\pi \ sr$
	In mJy	Toffolatti et al.	IAP GalICS	IAS model
350	180	67 185	61 0/0	18 30/
550	400	07,403	01,049	10,304
550	490	9,358	9,266	1,198
850	180	7,255	7,791	582
1380	120	4,442 (+RG)	1,180	182
2097	130	4,003 (+RG)	289	62

Simulations of Planck Fields

- <u>"Cavendish Lab."</u> (Hobson et al. 1998 from Toffolatti et al. 1998). *Include radiogalaxies*.
- <u>"Santander/Oviedo"</u> (Vielva et al. 2003, from Toffolatti et al. 1998). *Include radiogalaxies*.
- <u>"IAS"</u> (Dole et al. 2003, from Lagache et al. 2003).
- <u>"IAP/GalICS"</u> (Blaizot et al. 2003, and Devriendt et al. 2003 from GalICS, Hatton et al. 2003). *Include clustering*.

	Point Source Extra with Mexican Hat Wavelet (Vielva e 2001, 2003)				tracti at t et al	ion I.	
Frequency (GHz)	#	Min flux (Jy)	Ē (per cent)	\bar{b} (per cent)	Galactic cut (°)	N_{R_0}	Cor (j
857	27257	0.48	17.7	-4.4	25	17	
545	5201	0.49	18.7	4.0	15	15	
353	4195	0.18	17.7	1.4	10	10	
217	2935	0.12	17.0	-2.5	7.5	4	
143	3444	0.13	17.5	-4.3	2.5	2	
100 (HFI)	3342	0.16	16.3	-7.0	0	4	
100 (LFI)	2728	0.19	17.0	-2.4	0	4	
70	2172	0.24	17.1	-6.7	0	6	
44	1987	0.25	16.4	-6.4	0	9	
30	2907	0.21	18.7	1.2	0	7	

ł

Completeness

(per cent)

ConeMaker

Replication effects

« Random tiling »

Dusty sources in a 100 deg² HFI field (+noise)

1.0e + 06

6.0e+06 Jy/sr

All-sky maps achieved through connection of 192 patches. Hubble volume is paved by using the **MoMaF** random tiling method with a 150³ Mpc³ box simulation

Dusty sources in a 100 deg² field: The effect of large-scale structures

29 dusty sources @ 350 μm, z < 0.1

Mean sky density: 41 sources / 100 deg^2 ⁵⁴

Summary and Conclusions

- Extinction is important in the high-redshift universe. CIRB = (1-2)xCOB
- About 80 % of the CIRB has been broken into sources (thanks to gravitational lensing in cluster fields) at 15 μ m and 850 μ m. Only 10 % at 170 μ m, but most sources contributing at 170 μ m should have already been seen at 15 μ m.
- Sources are predominantly powered by starbursts. At 15 μm, mostly interacting LIRGs @z~0.8; At 850 μm, mostly merging ULIRGs @z~2.4 (1000 x more numerous than in local universe). MAMBO sources (1.2 mm) even more distant (z>2.5—3 ?). SFR from a few 10 to a few 100 M_{sun}/yr (up to 1000 M_{sun}/yr). IR/submm sources seem to share the same structures as AGNs.
- Link with other high-redshift objects (EROs, LBGs, LAEs) unclear (some submm sources are EROs, LBGs and/or LAEs).

Summary and Conclusions (continued)

- Spitzer is breaking up the CIRB at 3—8 μm (IRAC) and 24 μm (MIPS). Will improve IDs (especially for SCUBA/MAMBO sources), determine SEDs, detect and discriminate AGNs ("warm SEDs"), follow-up optically-detected sources (EROs—LBGs—LAEs connection), etc.
- Phenomenological models do quite well in reproducing counts, CIRB, fluctuations). More sophisticated models with physics of Hierarchical Galaxy Formation reproduce submm counts only if extra ingredients included (e.g. top-heavy IMF).
- Herschel will see ULIRG sources up to z=4 (counts, SEDs, clustering, etc...)
- Planck will see 10,000—30,000 sources at 857 GHz (mostly local sources with possible high-z monsters). Background intensity and fluctuations probe sources at z>1.

Dusty sources in a 1 deg² HFI and SPIRE field (+noise)

HFI 350 μm HFI 550 μm HFI 850 μn

GalICS model of Hierarchical Galaxy Formation http://galics.iap.fr

SPIRE 250 µm

SPIRE 350 µm

SPIRE 500 µm

Surface (Sq. Deg.)	5σ _{inst} (mJy)	5 <i>o_{conf}</i> (mJy)	5 σ_{tot} (mJy)	Days	Number of sources	% resolved CIB
400	100	28.2^{1}	103.9	18	4768	1
100	15.3	22.4	27.1	192	33451	6.7
8	7.5	22.4	23.6	64	3533	7.8

Table 5. Designed surveys that could be done with SPIRE (Numbers are from the 350 μ m channel).

¹ Unresolved sources below $5\sigma_{inst} = 100$ mJy induce a confusion noise of $\sigma_{conf} = 5.63$ mJy.

Table 6. Designed surveys that could be done with PACS.

Surface	λ (μm)	Days ^a	5σ _{inst} (mJy)	S _{min} ^b (mjy)	Number of sources	% resolved CIB
20 Sq. Deg.	170	88	7.08	10.01	87 322	48.7
625 Sq. Arcmin	110	67	0.89	1. 2 6	1955	77
25 Sq. Arcmin	75	96	0.13	0.18	192	87

^a Depending on the scanning/chopping/beam switching strategy, there may be some overhead of about 20% $b S_{min} = \sqrt{(5\sigma_{inst})^2 + S_{lim}^2} = \sqrt{2} \times S_{lim}$

Forthcoming IR/submm Observations A golden era for high-z submm sources

- **SIRTF** (launch in 2003) : MIPS (24, 70, 170 μm) : rest-frame MIR for z<3.
- HERSCHEL (launch in 2007) : PACS (60-90, 90-130, 130-210 μm) and SPIRE (200-350, 350-450, 450-670 μm)
 - Deep fields (S_{lim}=15 mJy @ 350 μ m) : a few 10⁴ sources. Expected 1<z<3. Confusion limited
 - Will study the SEDs of a large sample of high-z ULIRGs
- **PLANCK** (launch in 2007) : HFI (350, 550, 850 μm, 1.3, 2 mm)
 - All-sky Compact Source Catalogue (S_{lim} =260 mJy @ 350 µm) : a few 10⁴ to 10⁵ sources. Expected <z>=0.2.Confusion limited
 - Will study the rarest/most luminous ULIRGs
- **ALMA** (full operation 2010) : (850 µm, 1.3, 2 mm)
 - $5\sigma = 30 \mu Jy/beam in t_{exp} = 1h$. With 0.1 arcsec resolution : ID, morphology
 - Spectroscopic measures of z with CO lines
 - Will follow-up blank fields and optically selected high-z sources (LBGs)

ID of IR/submm sources

- ISOCAM @ 15 μ m, S_v>30 μ Jy : ID z = 0.5-1 (~ dusty, luminous galaxies of the CFRS)
- ISOPHOT @ 175 μ m, S_v>200 mJy : ID z < 0.5, + some sources à z ~1 ? (FIRBACK)
- SCUBA @ 850 μ m, S_v>2 mJy : 1 source arcmin⁻², IDs are diffficult; many « blank fields »; majority of source IDs at 1<z<4
 - some AGNs (10 % of CIRB ?)
 - some EROs (10 % du C IRB ?)
 - L_{IR} luminosities : a few 10¹¹ to a few 10¹² L $_{\odot}$ provided z>1
 - $-\rho_{SFR}(z>1) = 10^{-1} M_{\odot} yr^{-1} Mpc^{-3}$ (Hughes et al. 1998)

IR & Submm Panchromatic Sky

Possible Herschel Key Projects

GT KP: 50-60 d per instrument consortium

- HIFI Spectral Survey (60 d?)
- SPIRE/PACS Molecular Cloud Survey
 - Gal. Conf. Limit 10 mJy (1 σ), 100 deg², 30 d.
- SPIRE Galactic Plane Survey |b|<2.5°

 $-30 \text{ mJy} (1\sigma)$, 1800 deg², 54 d.

- SPIRE/PACS Extragalactic "Wedding-cake" Surveys from wide field to confusion limit
 - 4 surveys from 90 deg², 20 mJy (1 σ) @ 250 μ m to 0.25 deg², 0.54 mJy (1 σ) @ 120 μ m, 24 d. SWIRE fields ?
- SPIRE/PACS Targeted Proposals:clusters as lenses, cluster evolution, SZ clusters, high-z AGNs, galaxies and radiosources, rich environments, etc. 30 d ?

Planck/Herschel Synergy

- Complementary wavelength coverage (esp. 850 μm, 1380 μm) to bright sources found in Herschel Projects.
- Polarization.
- All-sky detection of «new», «rare» sources for Herschel followup.
- Cross-calibration of bright point sources, and diffuse background.