Hot Gas Induced Signal in WMAP's First Year Data

C.Hernández-Monteagudo (MPA),

R.Génova–Santos (IAC)

&

F.Atrio-Barandela (Univ. of Salamanca)

Hot Gas Induced Signal in WMAP's First Year Data - p.1/30

Summary:

- General Introduction
- The statistical method used
- The procedure
- The results
- The tests
- Conclusions

Intro: CMB Temperature Fluctuation

$$\delta T(\theta, \phi) = \sum_{l,m} a_{l,m} [\Omega_m, \Omega_b, h, n_s, \dots] Y_{l,m}(\theta, \phi)$$

CMB Power Spectrum: $C_l \equiv \langle |a_{l,m}a_{l,m}^*| \rangle$

Secondary Fluctuations

- Reionization
- Rees-Sciama effect: $\frac{\delta T_{RS}}{T_0} = -\frac{2}{c^2} \int d\eta \ \dot{\phi}(\eta)$
- Gravitational lensing
- Spectrum distortion after inverse Compton scattering with plasma: thermal Sunyaev-Zel'dovich effect, (tSZ).

$$\frac{\delta T_{tSZ}}{T_0} \simeq g(\nu) \int d\mathbf{r} \ \sigma_T n_e(\mathbf{r}) \frac{k_B T_e(\mathbf{r})}{m_e c^2}$$

Thermal Sunyaev-Zel'dovich Effect

$$\frac{\delta T_{tSZ}}{T_0} \simeq g(\nu) \int d\mathbf{r} \ \sigma_T n_e(\mathbf{r}) \frac{k_B T_e(\mathbf{r})}{m_e c^2} \simeq g(\nu) \frac{\sigma_T}{m_e c^2} \int d\mathbf{r} \ p_e(\mathbf{r})$$

Comptonization parameter: $y \equiv \int d\mathbf{r} \ \sigma_T n_e(\mathbf{r}) \frac{k_B T_e(\mathbf{r})}{m_e c^2}$

- As it distorts the CMB Black Body spectrum, it is frequency dependent. At WMAP's frequencies, g(ν) < 0.
- It measures integrated pressure along the LOS.

 \Rightarrow The tSZ effect on the CMB will be our tool to trace the presence of hot, ionized gas in cosmological scales.

Goals:

- Estimate the amount of tSZ signal present in WMAP data
- Identify the sources generating tSZ signal in WMAP data
- Constraints on Ω_{baryon} ?

Commonly Used Statistical Methods:

$$\mathbf{T} = \mathbf{T}_{cmb} + \alpha \mathbf{M} + \sum_{i} c_i \mathbf{F}^i + \mathbf{N},$$

Method i):
 Method ii):

$$\chi^{2} = (\mathbf{T} - \alpha \mathbf{M})\mathcal{C}^{-1}(\mathbf{T} - \alpha \mathbf{M})^{T} \qquad \chi^{2} = \sum_{ij} \left[C_{TM}(\theta_{i}) - \alpha C_{MM}(\theta_{i}) \right] \times E[\alpha] = \frac{\mathbf{T}\mathcal{C}^{-1}\mathbf{M}^{T}}{\mathbf{M}\mathcal{C}^{-1}\mathbf{M}^{T}} \qquad \pi_{ij}^{-1} \left[C_{TM}(\theta_{j}) - \alpha C_{MM}(\theta_{j}) \right] \\ \mathcal{C} = \langle (\mathbf{T} - \alpha \mathbf{M})^{T}(\mathbf{T} - \alpha \mathbf{M}) \rangle \qquad E[\alpha] = \frac{\sum_{ij} C_{TM}(\theta_{i})\pi_{ij}^{-1}C_{MM}(\theta_{j})}{\sum_{ij} C_{MM}(\theta_{i})\pi_{ij}^{-1}C_{MM}(\theta_{j})}$$

α will be our tSZ statistic!

Comparing the two methods...

- Errors go like $\sim 1/\sqrt{N_{pix}}$ for method i) and like $\sim 1/\sqrt{N_{pairs}} \sim 1/N_{pix}$ for method ii).
- Both assume $\langle \mathbf{T}_{cmb} \rangle = 0$. One may have to force it by hand!
- Possible systematics are more intuitive in method *i*). For this method, however, one must invert a matrix which cannot be too large.

 \Rightarrow We shall use method *i*)

Previous Works (I):

- Banday et al (1996). COBE data $(7^{\circ}) \Rightarrow$ no detection.
- Rubiño-Martín, Atrio-Barandela & Hernández-Monteagudo (2000). Tenerife data (5°) ⇒ no detection.
- Bennett el al (2003). WMAP data (0.21°):
 - Some clusters are seen (COMA)
 - Cross-correlation with XBAC (Ebeling et al.1996) gives 2.5σ detection.
- Diego, Silk & Sliwa (2003): \mathbf{WMAP} and ROSAT \Rightarrow no detection.
- Bough & Crittenden (2003): **WMAP** and HEAO-1, NVSS \Rightarrow ISW detection at 2-3 σ

Previous Works (and II):

- Fosalba & Gaztañaga (2003), Fosalba, Gaztañaga & Castander (2003): WMAP and APM, SDSS galaxy surveys. Evidence of ISW in the large scales and of tSZ in the small scales.
- Hernández–Monteagudo & Rubiño–Martín (2004), [HMRM]: 2–5σ detections on X-ray based Galaxy Cluster Catalogues
- Myers et al. (2004): they claim to have found *diffuse* tSZ emission up to $\sim 0.5^0-1^0$ scales: Is Ω_{baryon} higher than expected?

HMRM (I)

 $lpha\pm\sigma_{lpha}$, (μ K), [Kp0]

Template		W	R-W	Т03	R-T03
ACO (cal)	$ u_1 $	20.34 ± 6.83	18.57 ± 6.84	-1.32 ± 4.75	5.21 ± 4.82
	ν_2	17.21 ± 11.26	13.23 ± 11.32	-2.40 ± 7.60	2.72 ± 7.64
	$ u_3$	32.35 ± 28.69	12.46 ± 28.54	24.36 ± 18.10	-1.49 ± 18.27
ACO (n=1)	$ u_1$	13.44 ± 6.65	13.89 ± 6.64	0.54 ± 3.78	-0.35 ± 3.84
	$ u_2 $	16.22 ± 10.80	11.31 ± 10.85	-3.41 ± 7.03	-0.08 ± 7.14
	$ u_3$	20.69 ± 28.13	-23.49 ± 27.96	5.36 ± 17.29	-35.93 ± 17.56
ACO (n=2)	$ u_1$	6.93 ± 6.02	9.83 ± 6.05	-0.54 ± 3.13	-2.72 ± 3.22
	$ u_2 $	2.76 ± 10.91	4.72 ± 11.07	-6.81 ± 6.27	-3.99 ± 6.54
	$ u_3$	16.47 ± 28.41	-29.00 ± 28.50	5.19 ± 17.36	-30.98 ± 18.00
APM (n=1)	$ u_1$	-3.37 ± 8.94	-2.22 ± 8.93	-5.67 ± 4.16	-3.89 ± 4.15
	ν_2	-2.19 ± 15.96	6.15 ± 15.95	-7.57 ± 10.40	-11.41 ± 10.42
	$ u_3$	3.77 ± 31.99	29.28 ± 32.05	-3.05 ± 21.92	2.82 ± 22.09
APM (n=2)	ν_1	-5.58 ± 5.74	1.57 ± 5.76	-3.24 ± 2.55	-3.69 ± 2.58
	ν_2	-10.63 ± 12.45	9.96 ± 12.45	-9.62 ± 6.27	-9.10 ± 6.30
	$ u_3$	-0.54 ± 31.73	36.01 ± 31.78	-13.10 ± 19.49	$\textbf{-3.33} \pm \textbf{19.95}$

Hot Gas Induced Signal in WMAP's First Year Data – p.11/30

HMRM (II)

 $lpha\pm\sigma_{lpha}$, (μ K), [Kp0]

Template		W	R-W	Т03	R-T03
BCS	$ u_1$	$\textbf{-18.10}\pm\textbf{5.30}$	6.61 ± 5.37	$\textbf{-8.44} \pm \textbf{2.50}$	-2.76 ± 2.57
	ν_2	$\textbf{-29.87} \pm \textbf{11.40}$	16.66 ± 11.62	$\textbf{-19.00}\pm\textbf{6.63}$	-8.25 ± 6.81
	$ u_3$	$\textbf{-64.06} \pm \textbf{31.78}$	19.59 ± 31.96	$\textbf{-39.30} \pm \textbf{18.43}$	-12.30 ± 18.62
NORAS	$ u_1$	$\textbf{-10.95}\pm\textbf{5.47}$	8.12 ± 5.44	$\textbf{-10.47} \pm \textbf{2.64}$	4.12 ± 2.69
	$ u_2 $	-15.04 ± 11.06	18.17 ± 10.97	$\textbf{-17.89} \pm \textbf{6.50}$	3.79 ± 6.60
	$ u_3$	-29.65 ± 29.16	42.09 ± 28.51	$\textbf{-49.54} \pm \textbf{17.30}$	1.50 ± 17 .37
de Grandi	$ u_1$	-3.75 ± 3.05	$\textbf{-0.32} \pm \textbf{2.98}$	$\textbf{-7.24} \pm \textbf{1.32}$	-0.14 \pm 1. 29
	$ u_2 $	2.10 ± 10.45	2.75 ± 10.27	$\textbf{-21.49} \pm \textbf{5.19}$	5.31 ± 5.01
	$ u_3$	6.37 ± 28.68	-27.48 ± 28.47	$\textbf{-48.58} \pm \textbf{17.72}$	25.55 ± 17 .41
PSPC	$ u_1$	5.52 ± 4.31	2.98 ± 3.92	0.24 ± 1.89	-0.06 ± 1.73
	ν_2	12.94 ± 12.20	11.11 ± 11.22	-0.56 ± 6.68	$1.18\pm6.1~1$
	$ u_3$	17.87 ± 33.01	26.42 ± 29.55	-1.32 ± 19.89	-5.13 ± 17.75
Vogues	$ u_1 $	0.50 ± 2.44	1.12 ± 2.37	0.34 ± 1.07	0.19 ± 1.05
	$ u_2 $	14.91 ± 8.78	11.10 ± 8.61	3.47 ± 4.07	0.86 ± 4 .05
	ν_3	45.18 ± 31.03	37.81 ± 30.22	10.09 ± 18.51	1.57 ± 18.23

Hot Gas Induced Signal in WMAP's First Year Data – p.12/30

Myers et al., (2004)

Hot Gas Induced Signal in WMAP's First Year Data - p.13/30

The Procedure

- Our basic assumption: galaxies trace the distribution of hot gas

 $\Rightarrow \delta T_{tSZ}(\mathbf{n}) \propto N_{gal}(\mathbf{n})$

- We shall focus method i) on those pixels sets having higher projected galaxy density

$$\chi^{2} = (\mathbf{T} - \alpha \mathbf{M}) \mathcal{C}^{-1} (\mathbf{T} - \alpha \mathbf{M})^{T}$$
$$E[\alpha] = \frac{\mathbf{T} \mathcal{C}^{-1} \mathbf{M}^{T}}{\mathbf{M} \mathcal{C}^{-1} \mathbf{M}^{T}}$$
$$\mathcal{C} = \langle (\mathbf{T} - \alpha \mathbf{M})^{T} (\mathbf{T} - \alpha \mathbf{M}) \rangle$$

The 2MASS XSC Catalogue

- 2 Micron All Sky Survey (2MASS), Extended Source Catalogue (XSC), contains around $\sim 1,600,000$ objects, most of which are z < 0.1.
- It is based on infra-red bands: J, H and K
- It is an *all sky survey* particularly insensitive to dust absorption

 \Rightarrow good tracer of galaxies in the Zone of Avoidance

Processing the catalogue, (I)

- We asign to each pixel a value equal to the number of galaxies contained in such pixel.
- We convolve the resulting catalogue with a noise-weighted average of the beams of each of the four difference assemblies of WMAP's W band.
- We filter the catalogues with the Kp0 mask.

2MASS before convolution

2MASS before convolution

(45.0, 45.0) Galactic

2MASS after convolution

2MASS after convolution

(45.0, 45.0) Galactic

Hot Gas Induced Signal in WMAP's First Year Data - p.18/30

Processing the catalogue, (II)

- We divide the template in a number of patches (N_{patch}) of N_{pix patch} pixels each, so N_{pix total} = N_{patch} × N_{pix patch}.
- $N_{pix \ patch} = 64$, 128, 256, 512, 1024 and 2048
- We choose our patches in such a way that *first* patches have *brightest* (in the sense of *highest* galaxy density) pixels.

 \Rightarrow *Smaller* index corresponds to *higher* N_{gal}

• We apply our method *i*) separately for each of these patches, (note that, due to the required matrix inversion, $N_{pix \ patch}$ cannot be too big).

Index maps for 2MASS

2MASS index map

(45.0, 45.0) Galactic

Results (I)

Results (Ib)

- Evidence for temperature decrements is found in ~ 180 sq-degrees in the sky. The amplitude of the decrement is correlated to the projected galaxy density.
- High statistical significance ($\simeq 5\sigma$) in ~ 26 sq-degrees:

 $-35 \pm 7 \ \mu$ K.

- Decrements are spectrally compatible with tSZ effect.
- Foregrounds are likely to be irrelevant

Results (II)

- Angular extension of the sources is $\sim 20 30$ arcmins, (in dissagreement with Myers et al. (2004), who claimed $\sim 1^0$).
- Foregrounds do *not* compromise our results.

What generates this tSZ signal?

We cross correlated the 2048 densest pixels giving rise to a 5σ decrement with optical and X-ray based galaxy cluster catalogues:

- 1625 pixels in ACO catalogue
- 589 pixels in XBAC (Ebeling's) catalogue
- 525 pixels in NORAS catalogue
- 267 pixels in de Grandi catalogue
- 223 pixels in APM catalogue

Is there diffuse gas causing tSZ?

We masked out pixels belonging to all known galaxy clusters:

- For cluster with known core radii (r_c) , we removed all pixels within $r_v = 10 \cdot r_c$
- For clusters with known redshift, we assumed $r_v = 1.7$ Mpc.
- For clusters without redshift, we removed all pixels within a 30 arcmin radius from cluster center.

Effect of masking on our index map

Clusters in

Clusters masked out

(133.0, 37.5) Galactic

(133.0, 37.5) Galactic

\Rightarrow We remove ~ 4000 sq-degrees from the analysis

Hot Gas Induced Signal in WMAP's First Year Data - p.26/30

tSZ non-associated to known GC's:

- For the remaining 64 brightest pixels, we find $\alpha = -96 \pm 37 \ \mu \text{K} \ (2.6\sigma)$.
- This detection dillutes as more pixels are included

Where is this signal coming from?

Hot Gas Induced Signal in WMAP's First Year Data -p.27/30

From the Zone of Avoidance! (ZoA):

Diffuse tSZ

Coincidence with CIZA catalogue

CIZA and tSZ

45 of the 64 pixels belong to 5 different galaxy clusters present in the CIZA catalogue

The remaining pixels fail to give a significant tSZ detection.

Conclusions

In WMAP's first year data ...

- ... there are $\sim 26~{\rm sq}{\rm -degrees}$ with an average tSZ decrement of $-35\pm7~\mu{\rm K}$
- ... there is evidence for tSZ signal in $\sim 180~{\rm sq}{\rm -degrees}$ in the sky.
- ... most of the tSZ decrements are associated to galaxy clusters, whose typical angular size is 20–30 arcmins.
- ... there is tSZ signal coming from *at least* five different galaxy clusters placed in the ZoA.
- we have found *no* significant evidence for tSZ associated to structures like filaments and sheets in supercluster scales.