The South Pole: Acbar and the SPT

John Ruhl, Case Western Reserve University

Pressure Altitude ~ 12,000' Very high and cold ⇒ very little water vapor (the best observing this side of L2)

Quartiles of PWV at three Sites

L2

Atmospheric stability

860 GHz Zenith Optical Depth J.B. Peterson et al. 2002

Acbar skydips determine atmospheric opacity...

(and soon, Bussman etal 2004, atmospheric noise properties in Acbar's bands...)

The ACBAR Collaboration

U.C. Berkeley: W.L. Holzapfel M.D. Daub C.L. Kuo M. Lueker D. Woolsey

LBL: C. Cantalupo

CITA: J.R. Bond C.R. Contaldi D. Pogosyan

Winterovers:

Matt Newcomb (2001,2002) Paolo Calisse (2003) Justus Brevik (2004)

Case-Western: J. Ruhl J. Goldstein Z. Staniszewski

Cardiff: P.A.R. Ade C.V. Haynes C. Tucker

JPL: J.J. Bock A.D. Turner Caltech: A.E. Lange C. Reichardt M.C. Runyan

CMU: P. Gomez J.B. Peterson A.K. Romer

ESA: R.S. Bhatia G.I. Sirbi

Funded by the NSF Office of Polar Programs

Acbar Bands vs. Cosmic Signals

Acbar Bands vs. Atmospheric Transmission

2 + 1 = 3m effective diameter

0.5 meter radius "guard ring"

2 meter diameter primary

Viper Telescope

Feeds and filters (very similar to Planck)

³He/³He/⁴He Fridge

Acbar Receiver

FETs (120K)

Feed Horns

Filters

240mK Detectors

Beams and Calibration

2001: Mars

bandFWHM150 GHz4.8'220 GHz4.0'280 GHz4.0'350 GHz5.7'

2002: Venus

bandFWHM150 GHz4.7'220 GHz4.2'280 GHz3.9'

Noise is background limited...

Measured Performance of ACBAR (2002 Season)

Frequency Band (GHz)	150	220	280
Bandwidth (GHz)	31	31	48
Number of Detectors	8	4	4
Optimal efficiency (%)	40	34	33
Beam Size (FWHM)	4.7	4.2	3.9
Detector NEP (10 ⁻¹⁷ W/ \sqrt{Hz})	9.4	9.5	14.8
$NET_{RJ} (\mu K \sqrt{s})$ (1 detector)	200	250	280
NET _{CMB} ($\mu K \sqrt{s}$) (1 detector)	350	770	1550

Sensitivity/sqrt(t_obs) at 150GHz comparable to LDB ballooning...

Scan Strategy

Chopping flat rotates to sweep the array "horizontally" by 3 deg on the sky

(triangle wave, 0.7 and 0.3 Hz used)

While tracking (to compensate for Earth rotation)

(Move down in elevation a fraction of a beam, repeat)

To remove stationary and linearly drifting chopped offsets, we did our first CMB analysis on the pseudo-map:

$$S = M - (L + T)/2$$

0

μΚ

5

μΚ

Acbar 2002 CMB Power Spectrum:

Using LMT analysis on CMB2 and CMB5 fields at 150GHz. More results and more data are on the way!

The "Acbar-ext" CMB Power Spectrum

2001 & 2002 CMB Observations

Point source provides monitor of pointing and beams: Coadded point source image includes beam size and pointing jitter.

FIELD (PMN object)	RA (J2000)	DEC	Time (d)	σ ₁₅₀ /beam
CMB2 (J0455-4616)	73.962	-46.266	39	~9µK
CMB5 (J0253-5441)	43.372	-54.698	109	~5µK
CMB6 (J0210-5101)	32.692	-51.017	23	
CMB7 (J2235-4835)	338.805	-48.600	21	

Acbar: New Analysis of 2001/02 data (to get better high-*l* errors)

- Two more fields: CMB (2,5), plus (6,7)
- No LMT field-subtraction... instead, remove a slowly varying (in elevation, time) offset from each field. This loses some low-*l* signal, but does better at high-*l*
- A new calibration path: WMAP \Rightarrow B98 \Rightarrow Acbar

Acbar "upcoming errors"

2004: New B2K/Acbar overlap field

The South Pole Telescope

(A 10m diameter telescope for $\lambda > 200\mu$) John Ruhl, Case Western Reserve University

Funding: NSF Office of Polar Programs

SPT Collaboration:

U. Chicago Cardiff Univ. Case Western Harvard CfA LBNL U. C. Berkeley U. Illinois

Telescope Design: Vertex/RSI Other Structures: Raytheon Polar Services

Reference: SPIE paper, will be on astro-ph soon...

Science Goal #1: Discover 10's of 1000's of SZ Clusters,

use them to trace the history of structure formation, and thus measure time dependence of Λ

SZ will test Structure Formation Models

Watch the "mass histogram" evolve as f(z)... ie test N(M,z) and see whether it is consistent with (modified) Press-Schechter...

Getting the redshifts will be important.... and difficult.

Science Goal #2: Secondary CMB

Telescope Design Goals

- 1. Angular resolution for clusters (~ 1') at 150 GHz: Originally 8m + (1m radius "guard ring"), now 10m precision surface, no "guard ring"
- 2. Observe CMB & foregrounds from 1-3mm rms < 1mm/100 = 10 microns on small scales, rms < 1mm/20 = 50 microns on large scales pointing reconstruction ~ 1 arcsecond rms
- 3. Surveys $\Rightarrow 1^{\circ}$ diameter field of view at 150 GHz
- 4. Low offsets, low loading, low sidelobes *fixed Gregorian w/ cold secondary and stop, 2 levels of ground shields.*
- 5. Capable of sub-mm observations in the future *rms < 20 microns overall (in future)*
- 6. Flexibility for future use *pure parabolic primary, large optics cabin*

The Facility and Site

Optical Design: Off-axis Gregorian

10 Kelvin Secondary and Baffle

Structure and Shielding

SZ Focal Plane 2fλ Feedhorn Coupled, ~1000 elements

Figure: W. Holzapfel

TES Bolometer Array

Adrian Lee, UC Berkeley, APEX prototype

Observing Strategy: Atmospheric Noise and Filtering

(no chopper... can we succeed with telescope-scanning?)

Input:

- celestial signals (CMB, SZ)
- detector noise (with 1/f)
- Acbar-normalized atmospheric fluctuations
- SPT scan rate

Process:

- Do "fake" array observation to create timestream,
- use some method to filter 1/f + atmospheric noise

Output:

- naïvely "binned" maps
- cluster mass detection thresholds, etc

Pure Timestream filtering

3°x 3°

Noise: • 0.1 Hz 1/f • "SP-Acbar, Atmosphere"

Scan rate: 2'/second

Filter: 0.3Hz HP

Tom Crawford, U. Chicago

Array common-mode subtraction only

3°x 3°

Noise:

• 0.1 Hz 1/f • "SP-Acbar, Atmosphere"

Scan rate: 2'/second

Filter: 16 spatial modes at each timestep

Tom Crawford, U. Chicago

Band selection: which of 90, 150, 220, 270, 345 GHz ?

Expected performance of these bands if used on the SPT

ν_0	Δv	Т	P_o	G	NET _{RJ}	NET _{CMB}	θ_{fwhm}
(GHz)	(GHz)	(trans)	(pW)	(pW/K)	$(\mu K\sqrt{s})$	$(\mu K\sqrt{s})$	(arcmin)
95	24	0.964	8.1	2×10^{-10}	221	278	1.58
150	38	0.982	10.8	2×10^{-10}	150	259	1.00
219	35	0.969	11.0	2×10^{-10}	184	551	0.69
274	67	0.950	24.5	4×10^{-10}	159	774	0.56
345	27	0.844	22.3	4×10^{-10}	425	4975	0.44

Ongoing Work

Band selection: need more info on radio point sources populations, their correlations with clusters. Currently doing simulations to optimize bands and weighting...

Depth vs. Area: more simulations...

Scan speeds and patterns: more simulations with model atmosphere, elevation scanning, etc...

+ hardware, hardware, hardware...

Planned First Observing Season: Austral Winter 2007

END