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Concise Oxford dictionary:
Curvaton / 'ku:vaton/  noun
Light scalar field partially or totally 
responsible for the primordial 
density perturbations 
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Moduli problem: [Coughlan et al., '83]

Weakly coupled light scalar fields (m<<H) are not diluted during inflation and 
can dominate the universe and decay during or after nucleosynthesis
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LIGHT FIELDS
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CURVATON
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[Mollerach, '90;
Enqvist and Sloth, '02;
Moroi and Takahashi, '01;
Lyth and Wands, '02;
Bartolo and Liddle, 03]

QUESTION: WHY???



STANDARD VIEW: 

INFLATION provides us with three things:

  
Superluminal expansion

Origin of matter: reheating

Density perturbations  
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Hubble parameter during inflation~Hquantum fluctuations:



INFLATON PERTURBATIONS
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Slow-roll parameters

Relation between the inflaton potential
and the density perturbations

OBSERVABLES:

P , n S , r

P≡
V

 mPl
4

nS≡1d
lnP

d lnk
=12−6 

r≡
P T
P

=1 6 

Power spectrum

Tensor/ scalar ratio

Scalar spectral index

Constraints on the inflaton potential



OBSERVABLES:

P , n S , r , nT

nS−1=2−6 

r=16 

INFLATON PERTURBATIONS

[Leach and Liddle, 2002]

Data constraints
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INFLATON CONSTRAINTS
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COBE normalization
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INFLATON CONSTRAINTS
● Inflation is very economical but tightly constrained:
severe constraints on inflaton potential

CONSTRAINTS:

V ,V ' , V ' '

COBE normalization

V =1 0−7 2 mPl
4
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No gravity waves observed

Scale invariance
≪1 ⇒ mPl

2 V ' ' /V ≪1

● Some inflationary models motivated by particle 
physics (supersymmetry) require the violation 
of some of these constraints

[Dimopoulos and Lyth, 2002]

V ≪1 016GeV 4 a n d m~H

[Dvali and Kachru, 2003]



● The curvaton can generate perturbations and 
liberate the inflaton relaxing the constraints on 
inflaton potential: division of labours

COBE bound
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Drawback: 

● more difficult to directly test inflation   

Superluminal expansion

Origin of matter: reheating

INFLATON

INFLATON

CURVATONDensity perturbations  



CURVATON GENERATED PERTURBATIONS

● Any light field (overdamped during inflation, m<<H) inherits the 
same quantum fluctuation (flat spectrum) as the inflaton

Curvaton σ  : ≃H ≃H

 ≃ − 1
2

r r 


≃ − ,dec.



≃ − ,dec.
H


if ≫r

● By dominating the universe and decaying before nucleosynthesis 
the curvaton imprints its perturbations: generation of curvature perturbations
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New extra parameter: σ   expectation value during inflation

● These may be much larger than the inflaton perturbations



OBSERVABLES:
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QUARTIC INFLATION

V =4

Quartic inflation is excluded at 
95% C.L. by combined WMAP data

Number of e-folds

60th e-folds

[Leach and Liddle, '03]

[Peiris et al., '03]



QUARTIC INFLATION + CURVATON

V =4  

Mixed perturbations with σ    ~ 0.5 m
Pl

Mixed perturbations with σ    ~ 0.1 m
Pl

[Langlois and F.V., '04]

*
Pure curvaton perturbations  σ    << m
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Consistency relation

It allows to measure σ   and break the degeneracy



NON-GAUSSIANITIES
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Simple characterization of non-Gaussianities:                                                                                 
[Verde et al., '00; Komatzu and Spergel, '01] 
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[Lyth, Ungarelli and Wands, 03]

See Sabino Matarrese's talk

Quadratic field 
perturbation



REHEATING AND THE CURVATON IN THE LAB

Superluminal expansion

Origin of matter: reheating

INFLATON

CURVATON

CURVATONDensity perturbations  

● Baryons and leptons may have been generated by the curvaton (Affleck-
Dine field)     [Hebecker, March-Russel, Yanagida, '02; Moroi                                                      
             and Murayama, '02; MacDonald, '03]

(Small) Isocurvature perturbations

● The Minimal Supersymmetric Standard Model contains many flat directions 
(directions in the field space where V ~ 0): curvaton as flat 
direction of the MSSM.                [Mazumdar and Enqvist, '03; Enqvist, '04]

● Possibility to see the curvaton in the laboratory if LHC sees SUSY



       Fine structure:
 →  Small isocurvature perts
 →   Small non-Gaussianities
 →   Small deviation from scale-invariance

Perturbations: 
● Adiabatic
● Gaussian
● Scale-invariant

FINE STRUCTURE



Observables Values INFLATION CURVATON
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       Fine structure:
 →  Small isocurvature perts
 →   Small non-Gaussianities
 →   Small deviation from scale-invariance

Perturbations: 
● Adiabatic
● Gaussian
● Scale-invariant

SUMMARY



PARAMETRIC RESONANCE DURING INFLATION
[Langlois and F.V., in prep.]
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Time dependent mass 
breaks adiabaticity: 
σ  -particle production 
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The curvaton cannot couple to the inflaton but can naturally couple

to other fields, heavy during inflation, m
χ
 ~ H. 



FEATURES IN THE SPECTRUM

m
eff 2≃ g 22≃ g 2 X 2 e−3Ht sin 2 m t   k 2 / a2Important only for large scales: 



CONCLUSIONS

Why the curvaton?
● Light fields are generically predicted by supersymmetric models
● Separating the field responsible for superluminal expansion (inflaton) from the field 
responsible for density perturbations (curvaton) and
relax the constraints on the inflaton potential
● Contact with particle physics

 

Observational consequences:
● Inflation is more difficult to be tested

● The curvaton changes the predictions in the (n
s
,r)-plane and introduces a new degeneracy (σ 

  parameter)
● Features in the spectrum of perturbations may be present
● Small non-Gaussianities

 


