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Moduli problem: [Coughlan et al., '83]

Weakly coupled light scalar fields (m<<H) are not diluted during inflation and
can dominate the universe and decay during or after nucleosynthesis



LIGHT FIELDS

inflation

« Scalar field 0 negligible during inflation, p_<< P,
o Light field, L=% ' —%mimz <<H

_wm,<H = o=const
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Non-relativistic fluid, p_~1/a’




CURVATON [Mollerach, '90;
Enqvist and Sloth, '02;
A Moroi and Takahashi, '01;

p(p ‘ . Lyth and Wands, '02;
inflation Bartolo and Liddle, 03]
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QUESTION: WHY???



STANDARD VIEW:

INFLATION provides us with three things:

Superluminal expansion INFLATON
Origin of matter: reheating INFLATON
Density perturbations INFLATON

quantum fluctuations: 0 ¢ ~ H < Hubble parameter during inflation



INFLATON PERTURBATIONS
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and the density perturbations
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INFLATON PERTURBATIONS
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INFLATON CONSTRAINTS
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INFLATON CONSTRAINTS

« Inflation is very economical but tightly constrained:
severe constraints on inflaton potential

 Some inflationary models motivated by particle
physics (supersymmetry) require the violation

of some of these constraints
[Dimopoulos and Lyth, 2002]

V(p)<(10'°GeV)?

[Dvali and Kachru, 2003]
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Superluminal expansion

INFLATON

e The curvaton can generate perturbations and
liberate the inflaton relaxing the constraints on
inflaton potential: division of labours

Drawback:

» more difficult to directly test inflation

Origin of matter: reheating INFLATON
Density perturbations CURVATON
CONSTRAINTS:
V.V, V"
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COBEDbound
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CURVATON GENERATED PERTURBATIONS

e Any light field (overdamped during inflation, m<<H) inherits the
same quantum fluctuation (flat spectrum) as the inflaton

Curvaton O . So~H 6¢p=~H

» By dominating the universe and decaying before nucleosynthesis
the curvaton imprints its perturbations: generation of curvature perturbations
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New extra parameter: O expectation value during inflation



PURE CURVATON PERTURBATIONS
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QUARTIC INFLATION
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QUARTIC INFLATION + CURVATON
[Langlois alnd EV., '(4]
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NON-GAUSSIANITIES
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Quadratic field
perturbation
Simple characterization of non-Gaussianities:
[Verde et al.,'00; Komatzu and Spergel, '01]
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[Lyth, Ungarelli and Wands, 03]
See Sabino Matarrese's talk



REHFATING AND THE CURVATON IN THE LAB

 The Minimal Supersymmetric Standard Model contains many flat directions
(directions in the field space where V ~ 0): curvaton as flat
direction of the MSSM. [Mazumdar and Enqvist, '03; Enqvist, '04]

e Possibility to see the curvaton in the laboratory if LHC sees SUSY

Superluminal expansion INFLATON
Origin of matter: reheating CURVATON
Density perturbations CURVATON

 Baryons and leptons may have been generated by the curvaton (Affleck-
Dine field) [Hebecker, March-Russel, Yanagida, '02; Moroi
and Murayama, '02; MacDonald, '03]

(Small) Isocurvature perturbations



FINE STRUCTURE

Perturbations: Hne structure:
o Adiabatic — Small isocurvature perts
e Gaussian — Small non-Gaussianities
e Scale-invariant — Small deviation from scale-invariance
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SUMMARY

Perturbations: Hne structure:

o Adiabatic — Small isocurvature perts

e Gaussian — Small non-Gaussianities

e Scale-invariant — Small deviation from scale-invariance

Observables Values INFLATION CURVATON
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PARAMETRIC RESONANCE DURING INFLATION
[Langlois and E.V., in prep ]

The curvaton cannot couple to the inflaton but can naturally couple

to other fields, heavy during inflation, m ~ H.

V(U,X)z%miaz+%mixz+%gzazxz with m_<<m,
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FEATURES IN THE SPECTRUM
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CONCLUSIONS

Why the curvaton?
e Light fields are generically predicted by supersymmetric models

e Separating the field responsible for superluminal expansion (inflaton) from the field
responsible for density perturbations (curvaton) and
relax the constraints on the inflaton potential

* Contact with particle physics

Observational consequences:

e Inflation is more difficult to be tested

« The curvaton changes the predictions in the (n_;r)-plane and introduces a new degeneracy (O
parameter)

e Features in the spectrum of perturbations may be present

* Small non-Gaussianities



