Primordial non-Gaussianity

Sabino Matarrese Dipartimento di Fisica *G. Galilei* Universita' di Padova ITALY email: matarrese@pd.infn.it

based on ...

- Acquaviva V., Bartolo N., Matarrese S. & Riotto A. 2003, Nucl. Phys. B 667 119
- Bartolo N., Komatsu E., Matarrese S. & Riotto A. 2004, to appear in Phys. Rept., astro-ph/0406398
- Bartolo N., Matarrese S. & Riotto A. 2002, Phys. Rev. D 65 103505
- Bartolo N., Matarrese S. & Riotto A. 2004, Phys. Rev. D 69 043503
- Bartolo N., Matarrese S. & Riotto A. 2004, JCAP 01 003
- ✓ Bartolo N., Matarrese S. & Riotto A. 2004, JHEP **04** 006
- Liguori M., Matarrese S. & Moscardini L. 2003, Ap. J. 597 56
- Matarrese S., Musso, M.A., Riotto, A., 2004, JCAP, 05 008
- Mollerach S. & Matarrese S., 1997, Phys. Rev. D 56 4494

review on non-Gaussianity from Inflation

The effect of phases

20th IAP Colloquium on CMB Physics and Observation 3

The non-Gaussian model

Many primordial (inflationary) models of non-Gaussianity can be represented in configuration space by the general formula (e.g. *Verde et al. 2000; Komatsu & Spergel 2001*)

$$\Phi = \phi_{\mathsf{L}} + f_{\mathsf{NL}} * (\phi_{\mathsf{L}}^2 - \langle \phi_{\mathsf{L}}^2 \rangle)$$

where Φ is the large-scale gravitational potential, ϕ_{L} its linear Gaussian contribution and f_{NL} is the dimensionless <u>non-linearity parameter</u> (or more generally non-linearity function). The percent of non-Gaussianity in CMB data implied by this model is

Classify Inflationary Models (I)

- The shape of the inflaton potential $V(\phi)$ determines the observables. slow-roll conditions
- It is standard to use three parameters to characterize the shape:
 - "slope" of the potential ~ $(V'/V)^2$ 3
 - << 1 << 1 "curvature" of the potential $\sim V''/V$ n
 - "jerk" of the potential ~ $(V'/V)(V'''/V) \sim \varepsilon^2$ ξ

Classify Inflationary Models (II)

"Generic" predictions of single field slow-roll models vs. WMAP

Peiris et al. 2003

Each point is a "viable" slow-roll model, able to sustain inflation for sufficient *e*-foldings to solve the horizon problem and make the Universe (nearly) flat.

Monte Carlo simulations following (Kinney 2002) flow-equation technique

Where does large-scale non-Gaussianity come from?

- □ *Falk et al. (1993)* found $f_{NL} \sim \xi \sim \varepsilon^2$ (from non-linearity in the inflaton potential in a fixed de Sitter space) in the standard single-field slow-roll scenario
- □ Gangui et al. (1994), using stochastic inflation found f_{NL} ~ ε (from second-order gravitational corrections during inflation). Acquaviva et al. (2003) and Maldacena (2003) confirmed this estimate (up to numerical factors and momentum-dependent terms) with a full second-order approach
- □ Bartolo et al. (2004) show that second-order corrections after inflation enhance the primordial signal leading to $f_{\rm NL} \sim 1$

Non-Gaussianity requires more than linear theory ...

The leading contribution to higher-order statistics (such as the bispectrum, i.e. the FT of the three-point function) comes from second-order metric perturbations around the RW background (unless the primordial non-Gaussianity is very strong)

"... the linear perturbations are so surprisingly simple that a perturbation analysis accurate to second order may be feasible ..." (Sachs & Wolfe 1967)

First-order metric perturbations in the Newtonian gauge (*dust case*)

$$ds^{2} = a^{2}(\tau)[-(1+2\phi)d\tau^{2} - 2V_{i}d\tau dx^{i} + ((1-2\psi)\delta_{ij} + h_{ij})dx^{i}dx^{j}]$$

$$\nabla^{2}\nabla^{2}(\phi - \psi) = 0 \quad \text{scalar modes}$$

$$\nabla^{2}\nabla^{2}V_{i} = 0 \quad \text{vector modes} \quad V_{,i}^{i} = 0 \quad \text{tensor modes}$$

$$\nabla^{2}\nabla^{2}(h_{ij}^{2} + Hh_{ij}^{2} - \nabla^{2}h_{ij}) = 0 \quad h_{ij} = h_{ji} \quad h_{i}^{i} = h_{j,i}^{i} = 0$$

<u>Second-order</u> metric perturbations in the Poisson gauge (dust case) $ds^{2} = a^{2}(\tau)[-(1+2\phi)d\tau^{2} - 2V_{i}d\tau dx^{i} + ((1-2\psi)\delta_{ii} + h_{ij})dx^{i}dx^{j}]$ $\nabla^{2} \nabla^{2} (\phi - \psi) = -2 \nabla^{2} \nabla^{2} \varphi^{2} - \frac{1}{2} \nabla^{2} (2 \partial^{l} \varphi \partial_{l} \varphi + 3 H^{2} v^{2})$ scalar modes $+ \frac{3}{2} \partial^i \partial_j (2 \partial_i \varphi \partial^j \varphi + 3 H^2 v_i v^j)$ $\nabla^{2} \nabla^{2} V_{i} = 16 \pi G a^{2} \partial^{j} (v_{i} \partial_{i} \rho - v_{i} \partial_{j} \rho)$ $\nabla^2 \nabla^2 (h_{ij}^{\otimes} + H h_{ij}^{\otimes} - \nabla^2 h_{ij}) = 2 [\nabla^2 \partial^k \partial_l R_k^l \delta_j^i]$ + $2\nabla^{2}(\nabla^{2}R_{i}^{i} - \partial^{k}\partial_{i}R_{k}^{i} - \partial^{i}\partial_{l}R_{i}^{l})$ vector modes tensor modes + $\partial^i \partial_j \partial^k \partial_l R_k^l$] $R_{j}^{i} \equiv \partial^{i} \varphi \partial_{j} \varphi - \frac{1}{2} (\nabla \varphi)^{2} \delta_{j}^{i} + 4 \pi G a^{2} \rho (v^{i} v_{j} - \frac{1}{2} v^{2} \delta_{j}^{i})$

20th IAP Colloquium on CMB Physics and Observation Extended to fully non-linear scales by Carbone & Matarrese (2004)

Non-Gaussianity from Inflation: results (I)

- The amount of non-Gaussianity from a wide class of models, including single-field slow-roll inflation, curvaton (Mollerach 1990; Moroi & Takahashi 2001; Enqvist & Sloth 2002; Lyth & Wands 2002) and modulated reheating (Hamazaki & Kodama 1996; Dvali et al. 2003; Zaldarriaga 2003; Kofman 2003), once second-order effects are accounted for, follows a universal relation.
- One should also account for i) the large-scale (Sachs-Wolfe-like) second-order temperature fluctuations (*Mollerach & Matarrese 1997*), ii) the second-order intrinsic temperature anisotropies at last-scattering, and for iii) the effect of angular deflection in angular averaged relations, i.e. the first-order metric determinant (*Bartolo et al. 2004*)

Evaluating non-Gaussianity from inflation

- Evaluate non-Gaussianity during inflation by a self-consistent secondorder calculation.
- ► Evolve scalar (vector and tensor) perturbations to second order after inflation outside the horizon, matching a conserved second-order gauge-invariant variable, such as the <u>comoving curvature</u> <u>perturbation</u> $\zeta^{(2)}$ defined by *Malik & Wands (2004)*, or the similar quantity defined by *Salopek & Bond (1990)*, $\zeta^{(2)}_{SB} = \zeta^{(2)}|_{\rho} 2(\zeta^{(1)})^2$, to its value at the end of inflation (accurately accounting for the Universe reheating after inflation).
- Evolve them consistently inside the horizon -> this should involve a calculation of the radiation transfer function to second order!

Large-scale second-order CMB anisotropies

$$\Delta T/T = (\phi + \tau)_E - \phi_E^2/2 + \phi_E \tau_E + \text{ integrated effects}$$

(Pyne & Carroll 1996, Mollerach & Matarrese 1997)

expand ϕ and τ to second order

 $\phi = \phi^{(1)} + \phi^{(2)}/2, \qquad \tau = \tau^{(1)} + \tau^{(2)}/2$

$$\Delta T/T = (1/3) [\phi^{(1)}_{E} + \phi^{(2)}_{E}/2 - 5(\phi^{(1)}_{E})^{2}/6]$$

and estimate $\phi^{(2)}$ from inflation and post-inflation dynamics

Non-Gaussianity from Inflation: results (II)

$$\Delta T/T = 1/3 (\phi_{L} + \phi_{NL})$$
Sachs-Wolfe limit; replaced by full transfer function in CMB maps
$$\phi_{NL} = f_{NL} * \phi_{L}^{2} + CONSt.$$

$$f_{NL} = f_{NL}^{0} - 3(k_{1}^{4} + k_{2}^{4})/2k^{4} + (\underline{k}_{1} \cdot \underline{k}_{2} / k^{2}) \cdot (4 - 3 (\underline{k}_{1} \cdot \underline{k}_{2} / k^{2})], \qquad \underline{k} = \underline{k}_{1} + \underline{k}_{2}$$

Non-linearity parameter

Standard single-field slow-roll inflation:

 $f_{\rm NL}^{0} = 7/3$

 $\checkmark \frac{Curvaton \ scenario:}{f_{NI}^{0} = 2/3 - 5r/6 + 5/4r}$

r = ratio of curvaton to radiation energy-densities at curvaton decay

✓ <u>Modulated (inhomogeneous) reheating scenario:</u> $f_{NL}^{0} = 13/12 - I$ ← I = 0 for the minimal case

Inflation models yielding f_{NL} ~ 100 (adiabatic mode)

Multi-field inflation (Bartolo et al. 2002; Bernardeau & Uzan 2002; Bernardeau et al. 2004; Enqvist & Vaihkonen 2004; Rigopoulos & Shellard 2004) giving rise to a cross-correlated and generally non-Gaussian mixture of isocurvature and adiabatic perturbations (constrained by WMAP data; Komatsu, Spergel & Wandelt 2003)

unconventional models:

Higher-order operators (Creminelli 2003)

Ghost inflation: inflation driven by a ghost condensate (Arkani-Hamed et al. 2004)

D-cceleration: strong coupling QFT effects sum to provide a Dirac-Born-Infeld action for the inflaton (*Alishahiha et al. 2004; Silverstein & Tong 2004*)

Inflation models and f_{NL}

model	$f_{NL}(\mathbf{k}_1,\mathbf{k}_2)$	<u>comments</u>		
single-field inflation	7/3 – g(k ₁ , k ₂)	$g(\mathbf{k}_{1}, \mathbf{k}_{2})=3(\mathbf{k}_{1}^{4}+\mathbf{k}_{2}^{4})/2\mathbf{k}^{4}+(\mathbf{k}_{1}\cdot\mathbf{k}_{2})$ $[4-3(\mathbf{k}_{1}\cdot\mathbf{k}_{2})/\mathbf{k}^{2}]/\mathbf{k}^{2}, \mathbf{k}=\mathbf{k}_{1}+\mathbf{k}_{2}$		
curvaton scenario	2/3 - 5r/6 + 5/4r - g(k ₁ , k ₂)	r ~ (ρ _σ /ρ) _{decay}		
modulated reheating	13/12 - I - g(k ₁ , k ₂)	I = $-5/2 + 5\Gamma / (12 α\Gamma_1)$ I = 0 (<i>minimal case</i>)		
multi-field inflation	up to 10 ²	order of magnitude estimate of the absolute value		
"unconventional" inflation set-ups				
warm inflation	typically 10 ⁻¹	second-order corrections not included		
ghost inflation	- 140 β α ^{-3/5}	post-inflation corrections not included		
D-cceleration	- 0.1 γ ²	post-inflation corrections not included		

Influence of super-horizon scales on sub-horizon observables

 Further scale-dependent non-Gaussianity is produced by the cross-talk of super-horizon and sub-horizon scales, provided one accounts for the coloured (*non-Markovian*) nature of the sub-horizon guantum noise.

Using the techniques of out-of-equilibrium field theory one finds memory effects which produce: a <u>blue tilt</u> (Liguori, Matarrese, Musso & Riotto 2004) of the power-spectrum on the largest scales and an <u>excess of non-Gaussianity</u> also on large scales, whose size depends on the overall duration of inflation (Matarrese, Musso & Riotto 2004).

Non-Gaussian CMB anisotropies: map making Liguori, Matarrese & Moscardini 2003, ApJ 597, 56 assume mildly non-Gaussian large-scale potential fluctuations $\Phi(\mathbf{r}) = \Phi_L(\mathbf{r}) + f_{NL} \Phi_L^2(\mathbf{r})$ account for radiative transfer $= \frac{2}{\pi} \int dr \ r^2 \Delta_{\lambda}(r) \int d\Omega_{\hat{r}} \Phi(\underline{\mathbf{r}}) Y_{\lambda m}^*(\hat{\mathbf{r}})$ $a_{\lambda m}$ radiation transfer functions harmonic transform: $\Phi_{lm}(\mathbf{r})$ June 28, 2004 20th IAP Colloquium on CMB Physics and 20 Observation

Spherical coordinates in real space (I)

Work directly with multipoles in real space (to avoid Bessel transform and Cartesian coordinates)

1. generate white noise coefficients $n_{lm}(r)$

2. cross-correlate different $n_{lm}(r)$ by a convolution with suitable filters $W_l(r,r_1)$

$$\Phi_{\lambda m}(r) = \int dr_1 r_1^2 W_{\lambda}(r,r_1) n_{\lambda m}(r_1)$$

Spherical coordinates in real space (II)

$$W_{\lambda}(r,r_{1}) = \int dk \ k^{2} \sqrt{P_{\Phi}(k)} j_{\lambda}(kr) j_{\lambda}(kr_{1})$$

hand-nass filters W.(rr.

linear gravitational potential power-spectrum

$W_l(r,r_1)$ does not oscillate as fast as $j_l(kr)$

Outline of the code

- 1. precompute transfer functions (extracted from CMBfast) for a given model
- 2. precompute filters $W_{i}(r,r_{1})$
- 3. generate white-noise coefficients n_{Im}(r)
- 4. correlate white-noise coefficients to find multipoles $\Phi^{L}_{lm}(\mathbf{r})$ and then extract $\Phi^{NL}_{lm}(\mathbf{r})$
- 5. obtain CMB multipoles by convolving with radiation transfer function

<u>CPU time for a single map</u>

I max	CPU time (hh:mm) *	harmonic transform (hh:mm)	Nside
300	80:00	00:06	128
500	00:40	00:32	256
750	01:08	01:00	256
1500	17:34	16:00	512
3000	137:30	134:30	1024

* parallelization of the code is in progress

Non-Gaussian CMB maps: Planck resolution

20th IAP Colloquium on CMB Physics and Observation

$$f_{\rm NL} = -3000$$
 27

PDF of the NG CMB maps

20th IAP Colloquium on CMB Physics and Observation

Observational constraints on $f_{\rm NL}$

- The strongest limits on non-Gaussianity so far come from WMAP data. *Komatsu et al. (2003)* find (at 95% cl) $-58 < f_{\rm NI} < 134$
- According to *Komatsu & Spergel* (2001) using the angular bispectrum one can reach values as low as $|f_{NL}| = 20$ with *WMAP* & $|f_{NL}| = 5$ with *Planck* can be achieved
- The role of the f_{NL} momentumdependent part is being explored (*Liguori, Matarrese & Riotto 2004*) as a characteristic inflation signature refcelting in some specific triangle configuration of the bispectrum

Statistical analysis of NG CMB maps vs. WMAP

Local curvature of CMB anisotropies

Density of hills (where the Hessian eigenvalues are both positive) as a function of the threshold v, for different values of $f_{\rm NL}$. The grey band is the 1σ confidence level. The solid crosses are the *WMAP* data. One finds

$$f_{NL} = 30 \pm 210$$

at the 2σ level

Second-order effects from scalar modes & B-mode polarization

The B-mode polarization produced by primordial gravitational waves can be hidden by <u>gravitational</u> lensing and/or by <u>second-</u> -order vector and tensor modes, unless the inflation energy scale is larger than 10¹⁵ GeV

Mollerach, Harari & Matarrese 2004, Phys. Rev. D 69 063002

Conclusions & future prospects

- Contrary to earlier naive expectations, some level of non-Gaussianity is generically present in all inflation models
- ✓ The level of non-Gaussianity predicted in the simplest inflation models is slightly below the minimum value detectable by *Planck*, but the predicted angular dependence of $f_{\rm NL}$, extensive use of simulated non-Gaussian CMB maps, measurements of polarization and use of alternative statistical estimators might help non-Gaussianity detection down to $f_{\rm NL} \sim 1$
- Constraining or detecting non-Gaussianity will become a powerful tool to discriminate among competing scenarios for perturbation generation (*standard slow-roll inflation, curvaton and modulated-reheating scenarios, multi-field or ghost inflation, ...*) some of which imply large non-Gaussianity
- Accounting for the presence of sizeable non-Gaussianity in maximum likelihood analyses might change the estimated value of cosmological parameters
- Predicting or constraining non-Gaussianity should be considered as a branch of *Precision Cosmology*