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The effect of phases
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The non-Gaussian model

4~,

Many primordial (inflationary) models of non-Gaussianity can be

represented in configuration space by the general formula (e.g. Verde et
al. 2000; Komatsu & Spergel 2001)

O =¢ + L *(¢°-<¢*>)

where U is the large-scale gravitational potential, its linear Gaussian

contribution and IS the dimensionless non-linearity parameter (or more
generally non-linearity function). The percent of non-Gaussianity in CMB

data implied by this model is
<1073
from
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Classity Inflationary
Models (1)

The shape of the inflaton potential V' (¢)
determines the observables.

slow-roll conditions

It Is standard to use three parameters to
characterize the shape:

e “slope” of the potential ~ (V/V)F /<<1
n “curvature” of the potential ~I"/V '\ <<1

¢ “jerk” of the potential —(V/V)(V'/V) — &4
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Classify Inflationary

jLI\/Iodels (1)

\ r =16¢

— 1N, =1-6&+2n
dn,/dInk =-2& +16en —24¢°
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“Generic” predictions of single
field slow-roll models vs. WMAP
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Peiris et al. 2003

Each point is a “viable” slow-roll model, able to sustain inflation for sufficient
e-foldings to solve the horizon problem and make the Universe (nearly) flat.

Monte Carlo simulations following (Kinney 2002) flow-equation technique
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Where does large-scale non-
Gaussianity come from?

4 Falk et al. (1993) found (from non-linearity in the
inflaton potential in a fixed de Sitter space) in the standard
single-field slow-roll scenario

O Gangur et al. (1994), using stochastic inflation found
(from second-order gravitational corrections during inflation).
Acquaviva et al. (2003) and Maldacena (2003) confirmed this
estimate (up to numerical factors and momentum-dependent
terms) with a full second-order approach

Q Bartolo et al. (2004) show that second-order corrections after
Inflation enhance the primordial signal leading to
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Non-Gaussianity requires
more than linear theory ...

_N,

The leading contribution to higher-order statistics
(such as the bispectrum, i.e. the FT of the three-point
function) comes from second-order metric
perturbations around the RW background (unless the
primordial non-Gaussianity is very strong)

“... the linear perturbations are so surprisingly simple that a perturbation

analysis accurate to second order may be feasible ...”  (sachs & Wolfe 1967)

June 28, 2004 20th 1AP Colloquium on CMB Physics and 9
Observation



First-order metric perturbations in
the Newtonian gauge (dust case)

+

ds? =a?(z) [-(1+24)dz? — 2/, dadX +((L—2)5, +h, )dX dx]
VVA($~) =0 «——[scatar moves

VWA, =0 —Trrmones] Vi =
VAV (HE+ HIE—VPh, ) =0

June 28, 2004 20th 1AP Colloqguium on CMB Physics an d 10
Observation



Second-order metric perturbations
IN the Poisson gauge (dust case)

ds * =a’(r)[-(A+2¢)dzc?® —2Vdzdx '+ ((1- 2y )5, + h; )dx "dx ']

V'V (g —y) = —zvzvzgoz—lvz(za'gpa,gp +3H °v?)

2
|scalarmodes| +%5i5,-(25i(ﬂ5j§0+3|‘| 2ViVj)

VZVZVi:167zGa28j(Vj8ip—Vi8jp)
2 2 2 2k I [
VeV /(R + HIE —V?h,) =2[V°3*0,R\J

2 2 i k i i |

vectormodesl \ + 2V (V Rj_a aJ‘RI<_68IRJ‘)
i k |
|tensormodes|Jr 0 6j6 aIRk]

| i 1 I i 1 i
Rj=0 @51-(0—?(Vg0)25j + 47Ga *p (v Vj—§v25j)

June 28, 2004 ZygRvUgeelie VYRR UVE U Extended to fully non-linear scales by
Observation Carbone & Matarrese (2004)




Non-Gaussianity from
Inflation: results (1)

+

» The amount of non-Gaussianity from a wide class of models,

including Inflation, (Mollerach 1990,
Moror & Takahashi 2001, Enqvist & Sloth 2002; Lyth & Wands
2002) and (Hamazaki & Kodama 1996, Dvali

et al. 2003, Zaldarriaga 2003, Kofrman 2003), once second-order
effects are accounted for, follows a universal relation.

» One should also account for i) the large-scale (Sachs-Wolfe-like)
second-order temperature fluctuations (Mollerach & Matarrese
1997), 1i) the second-order intrinsic temperature anisotropies at
last-scattering, and for Iii) the effect of angular deflection in
angular averaged relations, i.e. the first-order metric determinant
(Bartolo et al. 2004)
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Evaluating non-Gaussianity
from inflation

» | Evaluate non-Gaussianity during inflation by a self-consistent second-
order calculation.

» Evolve scalar (vector and tensor) perturbations to second order after
inflation outside the horizon, matching a conserved second-order
gauge-invariant variable, such as the comoving curvature
perturbation defined by Malik & Wands (2004), or the similar
guantity defined by Salopek & Bond (1990), , to Its
value at the end of inflation (accurately accounting for the Universe
reheating after inflation).

» Evolve them consistently inside the horizon - this should involve a
calculation of the
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Large-scale second-order
CMB anisotropies

(Pyne & Carroll 1996, Mollerach & Matarrese 1997)

expand (I) and T to second order

o = o0 + ¢@2, =1 4 1@/

and estimate (I)(Z) from inflation and post-inflation dynamics
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Non-Gaussianity from
Inflation: results (11)

AT/T =173 (¢, + o)
\ Sachs-Wolfe limit; replaced by full

transfer function in CMB maps

One = o = 9% + const.

4
= fy - 3(k*+k,4)/72k4+ (K, Kk, 7/ K?) -

[4 -3 (k; k7 K9], K =k +k
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Non-linearity parameter

v Stanaard single-field slow-roll inflation.
£0=17/3

I' = ratio of curvaton to radiation

v CL//’ vaton scenar. /0_' energy-densities at curvaton decay
£,°=2/3-5r/6+5/4r —

v Moadulated (inhomogeneous) reheating scenario.
£0=13/12 -1 <

— | =0 for the minimal case
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Inflation models yielding
i — 100 (adiabatic mode)

Multi-field inflation (Bartolo et al. 2002; Bernardeau & Uzan 2002,
Bernardeau et al. 2004, Enqgvist & Vaihkonen 2004, Rigopoulos &
Shellard 2004) giving rise to a cross-correlated and generally non-
Gaussian mixture of isocurvature and adiabatic perturbations
(constrained by data; Komatsu, Spergel & Wandelt 2003)

Higher-order operators (Creminelli 2003)

Ghost inflation: inflation driven by a ghost condensate (Arkani-
Hamed et al. 2004)

D-cceleration: strong coupling QFT effects sum to provide a Dirac-
Born-Infeld action for the inflaton (Alishahiha et al. 2004, Silverstein &
Tong 2004)
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Inflation models and 7%

B

single-field inflation

7/3 - g(ky, k)

g(ky, ky)=3(k,*+k,*)/2k*+(k; ky) -
[4-3(k; ko)/k?1/K?, k=k;+k,

curvaton scenario

2/3 -5r/6 +5/4r - g(k;, k,)

r—= (pcs/p)decay

modulated reheating

13/12 - T - g(ky, k,)

I=-5/2+50/(12al))
I=0 (minimal case)

order of magnitude estimate of

multi-field inflation up to 102 i vl
: : : 1 second-order corrections not
warm inflation typically 10 included
_ _ post-inflation corrections not
ghost inflation - 140 B o35 included
] post-inflation corrections not
D-cceleration - 0.1y2 included
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Influence of super-horizon scales
on sub-horizon observables

verall duration of inflation
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v Further scale-dependent non-Gaussianity is produced
by the cross-talk of super-horizon and sub-horizon
scales, provided one accounts for the coloured
(non-Markovian) nature of the sub-horizon quantum noise.

v Using the techniques of out-of-equilibrium field theory one finds memory effects which
produce: a blue tilt (Liguori, Matarrese, Musso & Riotto 2004) of the power-spectrum
on the largest scales and an excess of non-Gaussianity also on large scales, whose
size depends on the overall duration of inflation (Matarrese, Musso & Riotto 2004).
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Non-Gaussian CMB anisotropies.
map making
+ Liguori, Matarrese & Moscardini 2003, ApJ 597, 56

 assume mildly non-Gaussian large-scale potential
fluctuations

(D(E) — (DL(£)+ fNL(Di(E)

(] account for radiative transfer

3 = —[dr 1A, (r) [dQ,® (0)Y), (F)

ol
JC

radiation transfer functions harmonic transform: @, (r)
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Spherical coordinates In real
space (1)

Work directly with multipoles in real

space (to avoid Bessel transform and
Cartesian coordinates)

1. generate white noise coefficients n,..(r)

2. cross-correlate different n,(r) by a
convolution with suitable filters W,(r,r,)

q)Nﬂ(r) = Jdrlrlz W?»(r’ rl) n7\m (rl)
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Spherical coordinates in real
space (1)

4~,

W,(r,r,) does not oscillate as fast as J,(kr)

June 28, 2004

band-pass filters W (r,r,)

!
W, (r, )= [ dk k*/P, (k) j, (kr) j, (k)

linear gravitational potential power-spectrum
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o

= 1.476 %10+ Mpc/h

1.48x 104 1.47 %104 1.48=104 1.49=104

r, (Mpc/h)
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Outline of the code

4~f precompute transfer functions (extracted
from CMBfast) for a given model

2. precompute filters W(r,r,)

3. generate white-noise coefficients n, (r)

4. correlate white-noise coefficients to find
multipoles ®-, (r) and then extract ®N-,_(r)

5. obtain CMB multipoles by convolving with
radiation transfer function
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CPU time for a single map

+

CPU time harmonic
/ (hh:mm) * | transform
max (hh:mm) Nside
300 00:08 00:06 128
100 00:40 00:32 256
750 01:08 01:00 256
1500 17:34 16:00 512
3000 137:30 | 134:30 1024

* parallelization of the code is in progress
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Non-Gaussian CMB maps:
Planck resolution

‘ , i f., = 3000
5’ resolution

= 3000, N,,,=2048

S/

//778)(

Liguori, Matarrese & Moscardini 2003, ApJ 597, 56

fu =0
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PDF of the NG CMB maps

400  -200 400 -200
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> \he strongest limits on non-

>

Observational constraints
on £

Gaussianity so far come from WMAP
data. Komatsu et al. (2003) find (at Q+V+W coadded map

(0)
95% CI) _ 58 < fNL < 134 f =38+48 for 1__ =265

According to Komatsu & Spergel
(2001) using the angular bispectrum
one can reach values as low as

fy | =20 EVIGRIZ7ZI |, | = 5
with Planck can be achieved

The role of the 4, momentum-
dependent part is being explored
(Liguori, Matarrese & Riotto 2004) as
a characteristic inflation signature 1000
refcelting in some specific triangle Komatsu et al. 2003
configuration of the bispectrum
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Density of hills (where the Hessian
eigenvalues are both positive) as a
function of the threshold v, for
different values of £,. The grey band
is the 1o confidence level. The solid
crosses are the WMAP data. One

finds

Statistical analysis of NG
CMB maps vs. WMAP

at the 2o level
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Cabella P., Liguori M., Hansen F., Marinucci D., Matarrese S., Moscardini L. & Vittorio N. 2004
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Second-order effects from scalar
modes & B-mode polarization

+

The B-mode polarization

secondary vector &
produced by primordial tensor modes
gravitational waves can
be hidden by gravitational
lensing and/or by second-
-order vector and tensor
modes, unless the inflation
energy scale is larger than
10%° GeV

gravitational lensing

primordial
gravitational waves

\

B
N

~

)
Q
~
—
X
=

Mollerach, Harari & Matarrese 2004, Phys. Rev. D 69 063002
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Conclusions & future
prospects

v ‘ Contrary to earlier naive expectations, some level of non-Gaussianity is generically
present in all inflation models

v The level of non-Gaussianity predicted in the simplest inflation models is slightly below
the minimum value detectable by , but the predicted angular dependence of £,
extensive use of simulated non-Gaussian CMB maps, measurements of polarization and
l]Jcse of alternative statistical estimators might help non-Gaussianity detection down to

=
NL

v Constraining or detecting non-Gaussianity will become a powerful tool to discriminate
among competing scenarios for perturbation generation (standard slow-roll inflation,
curvaton and moaulated-reheating scenarios, multi-field or ghost inflation, ...) some of
which imply large non-Gaussianity

v Accounting for the presence of sizeable non-Gaussianity in maximum likelihood
analyses might change the estimated value of cosmological parameters

v Predicting or constraining non-Gaussianity should be considered as a branch of
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