

European Research Council

RHAPSODY-G and MUSIC 2.0

Oliver Hahn (Laboratoire Lagrange, OCA, UCA)

RG with: D. Martizzi (U Berkeley), H.-Y. Wu (Caltech), P. Biernacki (U Zurich) R. Teyssier (U Zurich), G. Evrard (U Michigan), R. Wechsler (Stanford)

Simulations for cluster cosmology

Goal 1: use simulations to understand relation between proxies, mass and other properties! Goal 2: learn about galaxy formation and ICM physics

The RHAPSODY simulation suite - difference at fixed M

100 high-res N-body simulations of massive clusters all of the same mass 10^{15} M $_{\odot}$ at z=0 from as big as possible box 337Wu+(2012a,b)

At fixed mass, large differences in assembly history, profile, number of massive substructure ...

The RHAPSODY-G simulations

- 8 Mpc/h region around cluster
- 3.8 kpc/h (lowres)
 - 1.9 kpc/h (hires runs)
- star formation
- SN feedback (Dubois&Teyssier 2008)
- AGN feedback
 (Booth&Schaye 2009,
 - but implemented as Martizzi+ 2015)
- metal enrichment and metal cooling
- analysis with Rockstar-galaxies

The RHAPSODY-G simulations

gas density and temperature evolution

Reproducing (realistic) galaxies

Ratio of galaxy stellar mass to total mass (including DM) is a sensitive indicator if galaxy formation physics is ok

The cool-core non-cool-core dichotomy

The destruction of cool cores by mergers

Hahn+2015

The survival of cool cores in some mergers

t_{cool} / Gyr 0.1 10¹ M_{500c} / M_{\odot} RG 348 RG 545 10¹⁴ 0.4 0.5 0.8 0.9 0.6 0.7 а 1000E 100 E 10 t / Gyr 1 0.1 0.01^C 10 1000 100

r / kpc

10⊢

Oliver Hahn (OCA)

(cf. also Poole+2008, Burns+2008)

Some scaling relations

too X-ray bright (and somewhat too cold)

solution: likely refined black hole feedback, or additional physics (conduction)...

unclear: same AGN feedback works in Gadget (see LeBrun+2014)

Biggest Problem is AGN feedback

Booth&Schaye model doesn't seem to work in RAMSES

new AGNs...work in progress w/ Pawel Biernacki, kinetic feedback helps, also seeding matters...

Towards mock observation pipelines for clusters...

+crude color/luminosities directly in rockstar

Does it make sense to unify analysis tools in the RAMSES community?

Where do we need to go with cosmological ICs.

AGORA 1e11 halo (Kim et al. 2013)

Current Status

- very widely adopted in the community for zooms
- virtually all codes supported now
- modular structure for transfer functions and I/O
- 2nd order PT, standard cosmologies,...
- stable random number field

Challenges ahead

- bigger simulations (larger volume, higher res)
- bigger samples (stat. samples of zooms?)
- more physics

Where to move next

- MPI (for memory and speed)
- better random numbers (and also add PANPHASIA)
- more cosmology (B-fields, neutrinos?)
- more accurate baryon PT
- better community integration (database/cloud)
 [avoid everybody running their own boxes, selecting their own haloes for resim, -> towards SIMBAD for sims]
- quicker assembly of statistical samples (database)
- multiple zooms in one run?

What do you miss? don't like? could imagine?