RAMSES projects at Yonsei 2016

Sukyoung K. Yi (Yonsei University)

RAMSES projects at Yonsei

- Present {
 galaxy spin evolution (Hoseung Choi)
 disc galaxy merger (Jongwon Park)
- Absent {
 star formation quenching (Seoyoung Jung)
 cosmic evolution of dark halo concentration (Jinwoo Park)
- stripping in/outside clusters (Rory Smith)
 pure discs (Minjung Park)
 dark subhalo mass evolution: phase space analysis (Jinsu Rhee)
 - New Horizon

Cosmological Hydrodynamic Zoom-in Simulation

- RAMSES (AMR, Teyssier 2002)
- Baryon recipe: SF, SN, AGN FB (Dubois et al. 2012)
- 16 clusters in 200Mpc/h of 13.5 < log M/M $_{\odot}$ < 15.0
- dx = 0.76 kpc/h
- 10M core hr

Hoseung Choi

Thursday, October 13, 16

Galaxy spin evolution

Thursday, October 13, 16

Effect of AGN Feedback on SF of Merging Disk Galaxies

xy mergers and shell formation th, with Sanjaya Paudel & Pierre-Alan Duc

ter Survey al. 2016)

Rory Smith

observed dwarfs

2.Tidal mass loss in groups and clusters: DM vs stars

B) Dark matter stripped Stars not affected

C) Dark matter heavily stripped Stars start to be affected

f_{dm}=0.1, f_{str}=0.7

Smith et al. 2016, ApJ, in press

2. Tidal mass loss in groups and clusters: DM vs stars

• Useful recipe for improving modelling of stellar stripping in SAMs

concentrated $r_{e}/r_{vir} < 0.025$

$0.025 < r_e/r_{vir} < 0.04$

extended $r_{e}/r_{vir} > 0.04$

Smith et al. 2016, ApJ, in press

3.Ram pressure stripping zoom in simulation

- initially from 200Mpc
- large scale dx=5kpc to capture gravitational encounters with cluster potential
- zoom in scale dx=50pc to capture internal dynamics, interaction with environment, etc

Vector: ICM flow Rainbow: cold gas

Top: edge-on view of cold gas disc

Bottom: inclined view of cold gas disc

Vector: ICM flow Rainbow: cold gas

stars: white dense gas: rainbow low density gas: orange

Pure disc fraction

important prediction of LCDM universe.

Minjung Park

z t_{pure}

Pure discs: kinematic decoupling

Hoseung's clusters •other large-volume simulations resolution issues

Phase space analysis and the stripping of dark haloes in clusters

Jinsu Rhee

A cluster of $M_{vir} = 2.3e14(3D)$

Time since Infall: 16 clusters (projected)

Behaviours still visible after projection! Colour the probability that a subhalo is expected to be in that category

Rhee et al. 2016, in prep

Mass loss: 16 clusters (projected)

- Observers can guess how long it has been since the galaxy joined the cluster and how much (DM) mass has been lost since the peak mass time.
- Gas and stellar properties of galaxies will be inspected.

FIG. 8.— Master diagrams showing mean values and standard derivations of peak mass loss of all clusters.

Rhee et al. 2016, in prep

(The Horizon catalogue

Galaxies in the Horizon-AGN simulation

Resolution 2 kpc z= 2.60

Dubois, Devriendt, Gavazzi, Hahn, Kaviraj, Kimm, Le Borgne, Peirani, Pichon, Silk, Slyz, Volonteri, Yi

 high resolution cosmological zoom-in simulation • 10Mpc sphere • Resolution: $dx \sim 40pc$, $dm_s \sim 1e4$, $dm_{DM} \sim 1e6$ • with turbulence SF (Devriendt), mechnical feedback (Kimm), etc. • Mvir up to 4e12 • Computing: IAP: z>2 (2016-), Yonsei: z<2 (2017-)

New Horizon

z=9 Credit:Y. Dubois

