Feedback regulated escape of ionising photons from high redshift galaxies

Maxime Trebitsch

with J. Blaizot, J. Rosdahl, J. Devriendt, A. Slyz October 5, 2016

The Epoch of Reionisation

After \sim 1 Gyr, the gas in the Universe gets reionised

The Epoch of Reionisation

After \sim 1 Gyr, the gas in the Universe gets reionised

 $z \sim 20 \rightarrow 6$

What about the sources?

What about the sources?

Subdominant contribution from QSOs

Becker & Bolton 2013

Photon production rate

$$\hat{N}_{ion} =
ho_{SFR} imes \kappa_{ion} imes f_{esc}$$

= $ho_{UV} imes \xi_{ion} imes f_{esc}$

- $\rho_{\rm UV} \rightarrow$ How many galaxies?
- $\cdot \xi_{ion} \rightarrow$ How much ionising radiation do they produce?
- $f_{esc} \rightarrow$ How much of this radiation can escape?

Escape fraction

Observational constraints on f_{esc}

Bergvall+2013

4

Escape fraction

Observational constraints on f_{esc}

Bergvall+2013

4

What can we learn from simulations?

Simulating the escape of ionising radiation

Simulating the escape of ionising radiation

Simulating the escape of ionising radiation

 $f_{\rm esc} \searrow {\rm with} M_{\rm vir}?$

7

Why no convergence?

• ...

- Very different resolutions
- Radiative transfer is different
- "Target selection" is different
- Very different subgrid models (star formation, SN feedback, etc.)

Why no convergence?

•

- Very different resolutions
- Radiative transfer is different
- "Target selection" is different
- Very different subgrid models (star formation, SN feedback, etc.)

Can we understand the physical processes regulating f_{esc} ?

RHD simulations of galaxy formation

Simulation setup

- \cdot Cosmological zooms in a 10 h^{-1} cMpc box down to $z\sim 5.6$
- Initial conditions from MUSIC
- RHD runs with RAMSES-RT (Rosdahl+13), 3 photons groups
- Very high resolution
 - · $l_{max} = 21 \Leftrightarrow \Delta x \sim 7 \text{ pc}$
 - \cdot $m_{\rm DM}\simeq 2 imes 10^3 M_{\odot}$
 - $\cdot~m_{\star}\simeq 135 M_{\odot}$
- Three haloes:
 - Small: $M_{vir} = 8 \times 10^7 M_{\odot}$
 - Medium: $M_{vir}=6\times 10^8 M_{\odot}$
 - Large: $M_{vir} = 2 \times 10^9 M_{\odot}$

Subgrid physics

- Mechanical SN feedback as in Kimm & Cen (2014)
 - Designed to transfer the "right" amount of momentum at any stage of the SN
 - 10 Myr delay between star formation and SN explosion
 - \rightarrow Powerful galactic winds
- Thermoturbulent star formation (see J. Devriendt's talk)
 - Account for ISM-scale turbulence
 - Similar to the self-gravitating criterion of Hopkins+2013
 - SF efficiency based on Federrath & Klessen (2012)
 - \rightarrow SF is clumpy and bursty

Galaxy properties

Most massive halo ($M_{vir} \simeq 2 \times 10^9 M_{\odot}$) at $z \sim 6$

Escape of ionising photons

Photons produced and escape in burst as well

Escape of ionising photons

Feedback regulated escape of photons

Feedback regulated escape of photons

Photons can escape during SN feedback events

14

Feedback regulated escape of photons

Is all of this robust?

Do we have enough resolution?

Qualitatively, yes. Quantitatively, who knows?

What about the RT method?

Moments methods still preserve (some) directionality

What about the RT method?

Moments methods still preserve (some) directionality

Conclusions

Summary

- Low mass galaxy formation is regulated by the SN feedback.
- SF and the escape of ionising radiation happen in bursts.
- \cdot f_{esc} is mostly determined by ISM-scale processes.
- Recent improvements in subgrid modelling should lead to better predictions

What next?

- Small galaxies are found to harbour central BHs
- At high z, these BHs could be active \rightarrow extra source of feedback!
- \Rightarrow Even for "reionisation by galaxies", central BHs could play a role

Galaxy properties

Halo mass vs. stellar mass

Galaxy properties

Bursty star formation and massive winds

What about the RT method?

Measuring *f*_{esc}

