AGN Feedback In Galaxy Groups

Deovrat Prasad Indian Institute of Science, Bangalore, India

with Prateek Sharma(IISc) Arif Babul (Univ. of Victoria)

(Thanks to SERC, IISc, Bangalore)

Groups and Clusters

NASA, ESA, CXC/NRAO/STScI, B McNamara (Univ of Waterloo and Ohio Univ) Gitti et al, ApJ, 2010

Numerical Setup

PLUTO code (grid based code)

Spherical (r, θ , Φ) coordinates min($\Delta r = 5 \text{ pc}$)

 $M_{200} = 2 \times 10^{13} M_{sun}$

Jet mass loading factor:

 $\dot{M}_{
m jet} v_{
m jet}^2 = \epsilon \dot{M}_{
m acc} c^2$ Where,

∈ →accretion efficiency;
v_{jet} = 0.1 c

The Feedback cycle

Inflow-Outflow

Baryon Fraction

Mode of Accretion

Credit: NRAO/AUI/NSF; D Berry/SkyWorks; ALMA

Infalling Gas in Our Simulation

Stochastic Low Angular Momentum Cold Gas

Summary

- Cold mode AGN feedback control the catastrophic cooling flow in galaxy groups.
- AGN Feedback is unable to change the baryon fraction within R₂₀₀ dramatically.
- Different observables like jet power, cold gas mass, entropy etc evolve similar to galaxy clusters.
- Accretion of cold gas is stochastic with formation of no galactic scale disc.

