Measuring the masses of galaxy groups and clusters using galaxies

The Galaxy Cluster Mass Reconstruction Project: Radek Wojtak, Gary Mamon, Frazer Pearce, Ramin Skibba, Darren Croton, Meghan Gray, Richard Pearson, Trevor Ponman, Peter Behroozi, Reinaldo de Carvahlo, Juan Muñoz-Cuartas, Daniel Gifford, Anja von der Linden, Mike Merrifield, Volker Müller, Eduardo Rozo, Eli Rykoff, Chris Power, Stuart Muldrew, Alex Saro, Tiit Sepp, Cristobal Sifón, Elmo Tempel, Elena Tundo & Yang Wang.

Lyndsay Old

University of Toronto

Galaxy-based methods

Abell 1689 ESA/Hubble

Any technique that uses galaxy properties as a mass proxy e.g., positions, velocities, colours &

luminosities

Galaxy-based methods

Any technique that uses galaxy properties as a mass proxy e.g., positions, velocities, colours & luminosities

Why do we (still) care about them?

- Future data-sets: DES, Euclid etc.
- Independent mass proxy
- Some directly probe gravitational well
- \$ inexpensive!
- Extended galaxy distribution: clusters can be probed out to large radii e.g.,
 > R_{200c}
- Less sensitive to complex baryonic physics issues
- 2-for-1: dynamical analysis provides additional information about virialisation state

Modern cluster (cosmology) surveys

Adapted from Allen et. al., 2011

Why do we (still) care about them?

- Future data-sets: DES, Euclid etc.
- Independent mass proxy
- Some directly probe gravitational well
- \$ inexpensive!
- Extended galaxy distribution: clusters can be probed out to large radii e.g., > R_{200c}
- Less sensitive to complex baryonic physics issues
- 2-for-1: dynamical analysis provides additional information about virialisation state

We rely on galaxy-based group/cluster mass estimation techniques...

We rely on galaxy-based group/cluster mass estimation techniques...

But do we know how well these techniques perform?

University of Toronto

The first homogenous, blind study of galaxy-based mass estimation techniques

The first systematic, homogenous study of galaxy-based mass estimation techniques

- Primary aim: how much scatter in log M_{200c} do we expect?
- Which method is best for given data-set?
- Long-term goal: how can we improve these methods?

Millennium Simulation (Springel et al., 2005), Bolshoi (Klypin et al., 2011)

Give participants only basic properties

Method	Initial galaxy selection	Mass estimation	Type of data required	Reference
PCN	Phase space	Richness	Spectroscopy	Pearson et al. (in preparation)
PFN*	FOF	Richness	Spectroscopy	Pearson et al. (in preparation)
NUM	Phase space	Richness	Spectroscopy	Mamon et al. (in preparation)
RM1	Red sequence	Richness	Multiband photometry, sample of central spectra	Rykoff et al. (2014)
RM2*	Red sequence	Richness	Multiband photometry, sample of central spectra	Rykoff et al. (2014)
ESC	Phase space	Phase space	Spectroscopy	Gifford & Miller (2013)
MPO	Phase space	Phase space	Multiband photometry, spectroscopy	Mamon et al. (2013)
MP1	Phase space	Phase space	Spectroscopy	Mamon et al. (2013)
RW	Phase space	Phase space	Spectroscopy	Wojtak et al. (2009)
TAR*	FOF	Phase space	Spectroscopy	Tempel et al. (2014)
PCO	Phase space	Radius	Spectroscopy	Pearson et al. (in preparation)
PFO*	FOF	Radius	Spectroscopy	Pearson et al. (in preparation)
PCR	Phase space	Radius	Spectroscopy	Pearson et al. (in preparation)
PFR*	FOF	Radius	Spectroscopy	Pearson et al. (in preparation)
MVM*	FOF	Abundance matching	Spectroscopy	Muñoz-Cuartas & Müller (2012)
AS1	Red sequence	Velocity dispersion	Spectroscopy	Saro et al. (2013)
AS2	Red sequence	Velocity dispersion	Spectroscopy	Saro et al. (2013)
AvL	Phase space	Velocity dispersion	Spectroscopy	von der Linden et al. (2007)
CLE	Phase space	Velocity dispersion	Spectroscopy	Mamon et al. (2013)
CLN	Phase space	Velocity dispersion	Spectroscopy	Mamon et al. (2013)
SG1	Phase space	Velocity dispersion	Spectroscopy	Sifón et al. (2013)
SG2	Phase space	Velocity dispersion	Spectroscopy	Sifón et al. (2013)
SG3	Phase space	Velocity dispersion	Spectroscopy	Lopes et al. (2009)
PCS	Phase space	Velocity dispersion	Spectroscopy	Pearson et al. (in preparation)
PFS*	FOF	Velocity dispersion	Spectroscopy	Pearson et al. (in preparation)

Step 1 = cluster finding

Step 2 = members

Step 3 = mass

Method	Initial galaxy selection	Mass estimation	Type of data required	Reference
PCN	Phase space	Richness	Spectroscopy	Pearson et al. (in preparation)
PFN*	FOF	Richness	Spectroscopy	Pearson et al. (in preparation)
NUM	Phase space	Richness	Spectroscopy	Mamon et al. (in preparation)
RM1	Red sequence	Richness	Multiband photometry, sample of central spectra	Rykoff et al. (2014)
RM2*	Red sequence	Richness	Multiband photometry, sample of central spectra	Rykoff et al. (2014)
ESC	Phase space	Phase space	Spectroscopy	Gifford & Miller (2013)
MPO	Phase space	Phase space	Multiband photometry, spectroscopy	Mamon et al. (2013)
MP1	Phase space	Phase space	Spectroscopy	Mamon et al. (2013)
RW	Phase space	Phase space	Spectroscopy	Wojtak et al. (2009)
TAR*	FOF	Phase space	Spectroscopy	Tempel et al. (2014)
PCO	Phase space	Radius	Spectroscopy	Pearson et al. (in preparation)
PFO*	FOF	Radius	Spectroscopy	Pearson et al. (in preparation)
PCR	Phase space	Radius	Spectroscopy	Pearson et al. (in preparation)
PFR*	FOF	Radius	Spectroscopy	Pearson et al. (in preparation)
MVM*	FOF	Abundance matching	Spectroscopy	Muñoz-Cuartas & Müller (2012)
AS1	Red sequence	Velocity dispersion	Spectroscopy	Saro et al. (2013)
AS2	Red sequence	Velocity dispersion	Spectroscopy	Saro et al. (2013)
AvL	Phase space	Velocity dispersion	Spectroscopy	von der Linden et al. (2007)
CLE	Phase space	Velocity dispersion	Spectroscopy	Mamon et al. (2013)
CLN	Phase space	Velocity dispersion	Spectroscopy	Mamon et al. (2013)
SG1	Phase space	Velocity dispersion	Spectroscopy	Sifón et al. (2013)
SG2	Phase space	Velocity dispersion	Spectroscopy	Sifón et al. (2013)
SG3	Phase space	Velocity dispersion	Spectroscopy	Lopes et al. (2009)
PCS	Phase space	Velocity dispersion	Spectroscopy	Pearson et al. (in preparation)
PFS*	FOF	Velocity dispersion	Spectroscopy	Pearson et al. (in preparation)

Step 1

Method	Initial galaxy selection			
PCN	Phase space		Spectroscopy Friends-Of-Friends	
PFN*	FOF	Richness	Spectroscopy	
NUM	Phase space		Spectroscopy	
RM1	Red sequence			
RM2*	Red sequence			
ESC	Phase space			
MPO	Phase space			
MP1	Phase space	Phase space	Phase space: within a	
RW	Phase space		Spectroscopy aartain diatanaa and	
TAR*	FOF			
PCO	Phase space		Spectroscopy velocity from cluster	
PFO*	FOF		Spectroscopy	
PCR	Phase space		Spectroscopy	
PFR*	FOF			
MVM*	FOF			
AS1	Red sequence			
AS2	Red sequence			
AvL	Phase space	velocity dispersion	Red sequence:	
CLE	Phase space		Spectroscopy colociting galaxies of a	
CLN	Phase space		selecting galaxies of a	
SG1	Phase space		Spectroscopy certain colour	
SG2	Phase space			
SG3	Phase space			
PCS	Phase space			
PFS*	FOF			

Step 2

Method	Initial galaxy selection	Mass estimation	Type of data requ	
PCN PFN* NUM RM1 RM2*	Phase space FOF Phase space Red sequence Red sequence	Richness Richness Richness Richness Richness	Spectroscopy Spectroscopy Spectroscopy Multiband photon Multiband photon	Number of galaxies above a given luminosity threshold
ESC MPO MP1 RW TAR* PCO PFO* PCR PFR*	Positions & velocities of galaxies	Phase space Phase space Phase space Phase space Phase space Radius Radius Radius Radius	Spectroscopy Multiband photon Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy	RMS radius/ DM profile fitted to obtain radius.
AS1 AS2 AvL CLE CLN SG1 SG2 SG3 PCS PFS*	$M\propto\sigma^3$	Abundance matching Velocity dispersion Velocity dispersion Velocity dispersion Velocity dispersion Velocity dispersion Velocity dispersion Velocity dispersion Velocity dispersion Velocity dispersion Velocity dispersion	Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy Spectroscopy	Matching using theoretical halo mass function & cluster r-band luminosity function

Statistics I'll refer to a lot...

<u>RMS</u>: root-mean-square difference between the recovered and true log mass

<u>OMRec</u>: scatter about the recovered log mass

Results!

HOD2 catalogue

NUM

RM1

HOD2

PFN

PCN

SAM2 catalogue

Radial

HOD & SAM catalogues producing, on average, qualitatively similar level of scatter & bias

University of Toronto

Catastrophic failures

Fraction of clusters whose mass is wrong by > a factor of 10

Outliers over-predicting mass will be detrimental due to steeply falling high mass end of cluster mass function

- Dynamical substructure & mass estimation (Old et. al, in prep.)
- Mass bias due to contamination & incompleteness (Wojtak et. al, in prep.)

Some fraction of cluster population still have significant substructure i.e., unrelaxed, have undergone a recent merger, far from virialisation.

Some fraction of cluster population still have significant substructure i.e., unrelaxed, have undergone a recent merger, far from virialisation.

Q. Do we really need to exclude heavily substructured clusters from our cluster (cosmology) samples?

Some fraction of cluster population still have significant substructure i.e., unrelaxed, have undergone a recent merger, far from virialisation.

Q. Do we really need to exclude heavily substructured clusters from our cluster (cosmology) samples? Q. Are mass proxies strongly affected (i.e., increased scatter or biased) by significant substructure?
Strong effect: Geller & Beers 1982, Girardi et al. 1997, Smith et al. 2005, Hou et al., 2012.
Little effect: Biviano et al. 1993, Fadda et al. 1996, Wing & Blanton 2012, Sifon et al., 2013.

Some fraction of cluster population still have significant substructure i.e., unrelaxed, have undergone a recent merger, far from virialisation.

Q. Do we really need to exclude heavily substructured clusters from our cluster (cosmology) samples? Q. Are mass proxies strongly affected (i.e., increased scatter or biased) by significant substructure?
Strong effect: Geller & Beers 1982, Girardi et al. 1997, Smith et al. 2005, Hou et al., 2012.
Little effect: Biviano et al. 1993, Fadda et al. 1996, Wing & Blanton 2012, Sifon et al., 2013. Quantifies difference between local 'subgroups' and global cluster properties

$$\delta_{\rm i}^2 = \left(\frac{N_{\rm nn} + 1}{\sigma_{\rm c}}\right) \left[\left(\overline{\nu}_{\rm local} - \overline{\nu}_{\rm global}\right)^2 + \left(\sigma_{\rm global} - \overline{\nu}_{\rm c}\right)^2\right], \text{ where } N_{\rm nn} = \sqrt{n_{\rm members}}$$

Correction made to original test (Pinkney et al. 1996; Hou et al. 2012)

The DS statistic $\Delta = \sum_{i} \delta_{i}$ Dressler & Shectman 1988

The significance of the presence of 'significant substructure' is quantified by Monte Carlo 'shuffling' of the velocities.

Quantifies difference between local 'subgroup' and global cluster properties

$$\delta_i^2 = \left(\frac{N_{nn} + 1}{\sigma_c}\right) \left[(\overline{\nu}_{local} - \overline{\nu}_{global})^2 + (\sigma_{global} - \overline{\nu}_c)^2 \right], \text{ where } N_{nn} = \sqrt{n_{members}}$$
Correction made to original test (Pinkney et al. 1996; Hou et al. 2012)
The DS statistic $\Delta = \sum_i \delta_i$ Dressler & Shectman 1988
The significance of the presence of 'significant substructure' is quantified by
Monte Carlo 'shuffling' of the velocities.

DS test is most reliable obs. substructure indicator according to Pinkney et al., 1996, Hou et. al 2012, however, viewing-angle dependent etc. (White et. al 2010, Cohn et. al 2012).

Significant dynamical substructure & overall uncertainty in mass

Lyndsay Old

University of Toronto

Significant dynamical substructure & overall uncertainty in mass

Increase

Decrease

Work in Progress!

Lyndsay Old

Measuring galaxy cluster masses using galaxies

Take home points

- Scatter in M_{200c} for majority of galaxybased mass estimation techniques is high, factor of ~2-12.
- Scatter is generally higher for groups than clusters for majority of methods.
- Methods using same proxy e.g., σ do not necessarily perform consistently.
- Stronger correlation of the recovered to true N_{gal} in comparison with M_{200c}.
- Many methods overestimate high mass clusters - implications due to steeply falling cluster mass function.

Measuring galaxy cluster masses using galaxies

Take home points

- Scatter in M_{200c} for majority of galaxybased mass estimation techniques is high, factor of ~2-12.
- Scatter is generally higher for groups than clusters for majority of methods.
- Methods using same proxy e.g., σ do not necessarily perform consistently.
- Stronger correlation of the recovered to true N_{gal} in comparison with M_{200c}.
- Many methods overestimate high mass clusters - implications due to steeply falling cluster mass function.

Future work

- Does significant substructure increase scatter/bias in mass estimation? (Old et al., in prep.)
- Contamination/incompleteness of methods (Wojtak et al., in prep)
- Mass recovery at:
 - high-z
 - different phases of cluster evolution (premergers, mergers)
 - multi-wavelength (X-ray, SZ)?