Galaxy properties within cosmic web filaments

Clotilde Laigle

University of Oxford

Pichon C., Arnouts S., McCracken H. J., Dubois Y., LeBorgne. D., Devriendt J., Slyz A. Hwang H. S., Malavasi N., Benoit-Levy A.

DM simulation

IAP - 14 decembre 2016

Local density versus tidal effects

Enhancement of the abundance of massive halos/galaxies in denser environments

Density: trace of the hessian $\nabla^2 \phi(\mathbf{x}) = 4\pi G \rho_0 a^2 \delta(\mathbf{x})$

Galaxy properties within cosmic web filaments

Clotilde Laigle

University of Oxford

Pichon C., Arnouts S., McCracken H. J., Dubois Y., LeBorgne. D. Devriendt J., Slyz A. Hwang H. S., Malavasi N., Benoit-Levy A.

DM simulation

IAP - 14 decembre 2016

Local density versus tidal effects

Tidal effects

tidal tensor: traceless part of the hessian

$$T_{ij} = \left[\frac{\partial^2}{\partial_i \partial_j} - \frac{1}{3}\,\delta_{ij}\,\nabla^2\right]\phi$$

See e.g.: Sheth et Tormen04, Croton+07, Dalal +08,Hahn+09,Wang+11, ...

- Tidal suppression of halo growth in the vicinity of a massive object

- Different formation histories for haloes in different environments

- dynamical connection between halo and the cosmic web

Local density versus tidal effects

Tidal effects

tidal tensor: traceless part of the hessian

$$T_{ij} = \left[\frac{\partial^2}{\partial_i \partial_j} - \frac{1}{3}\,\delta_{ij}\,\nabla^2\right]\phi$$

See e.g.: Sheth et Tormen04, Croton+07, Dalal +08,Hahn+09,Wang+11, ...

- Tidal suppression of halo growth in the vicinity of a massive object

- Different formation histories for haloes in different environments

- dynamical connection between halo and the cosmic web

A critical ingredient: the anisotropy of the cosmic web

Dynamical connection between galaxies and cosmic web (TTT)

Sousbie+08, Paz+08, Zhang+09, Codis +12, Libeskind+13, Laigle+15, Aragon-Calvo 13, Dubois+14

|Cos θ |

We look for an effect:

- distinct from the local density
- at larger scale than the group scale

We look for an effect:

- distinct from the local density
- at larger scale than the group scale

Tidal field drives:

- different formation histories for haloes in different environment

- a dynamical connection between galaxies/ haloes and the cosmic web

Crucial: the anisotropy of the environment

We look for an effect:

- distinct from the local density
- at larger scale than the group scale

Tidal field drives:

- different formation histories for haloes in different environment

- a dynamical connection between galaxies/ haloes and the cosmic web

Crucial: the anisotropy of the environment what is the impact for galaxies?

We look for an effect:

- distinct from the local density
- at larger scale than the group scale

Tidal field drives:

- different formation histories for haloes in different environment
- a dynamical connection between galaxies/ haloes and the cosmic web
- Crucial: the anisotropy of the environment what is the impact for galaxies?

We will look for the evolution of galaxy properties (mass, colour-type) as a function of their distance to the filament

Reconstructing the cosmic web: galaxy distribution

Skeleton extraction in VIPERS W1, 0.4<z<1, i_{AB}<22.5, scale of ~10cMpc (Malavasi+16)

Costly to probe the cosmic web at ~Mpc scale

See also e.g.: Kraljick+in prep., GAMA

Spectroscopy versus photometry: complementary approach

Spectroscopic surveys: redshift precisely known, but relatively poor sampling

The persistent skeleton: a tracer of filaments Sousbie+11

- Filaments: a set of gradient lines connecting peaks
- Skeleton lines between peaks pass through one saddle point

The persistent skeleton: a tracer of filaments **Sousbie+11**

- Filaments: a set of gradient lines connecting peaks
- Skeleton lines between peaks pass through one saddle point
- Persistence allows to work with noisy datasets

Spectroscopy versus photometry: complementary approach

Spectroscopic surveys: redshift precisely known, but relatively poor sampling

30 photometric bands from NUV to FIR and 30 000 spectra New IR (IRAC, Spitzer) and NIR (UltraVISTA DR2): crucial for accurate redshifts and masses at high-redshift Extraction of a new catalog

Photo-z are computed with LePhare (Arnouts+2002, Ilbert+2006)

Spectroscopy versus photometry: complementary approach

Spectroscopic surveys: redshift precisely known, but relatively poor sampling

The Horizon-AGN simulation **Dubois+14**

- Run with RAMSES, not calibrated on the local Universe
- Cosmological volume (100 Mpc/h)

 Subgrid physics (below ~1kpc): stellar evolution and feedback, BH formation, BH growth, AGN feedback, gas cooling and heating

- Galaxies and haloes extracted with AdaptaHOP (Aubert+04)
- Photometry modeling and spectra production

Horizon-AGN provides realistic galaxy properties, distribution and clustering

The Horizon-AGN ligthcone

Dubois+14

field of view 1deg^2 for z>1 5deg^2 for z<1

Tracing the filaments with COSMOS2015 Laigle+ in prep.

Tracing the filaments with COSMOS2015 Laigle+ in prep.

30 slices between 0.5 and 0.9, thickness 75 cMpc, persistence 2 sigma

Reliability of the 2D skeleton

Laigle+ in prep.

Reliability of the 2D skeleton

Laigle+ in prep.

- Galaxies in the vicinity of nodes are removed from the analysis

- Each galaxy is down-weighted by the inverse of the density

➡ We measure an effect specific to the filaments

Can we measure it in projected 2D slices of thickness 75 cMpc with photometric redshifts and masses?

Mass gradients in 2D

Laigle+ in prep.

Mass gradients towards filament found in 2D in simulated and observed data

Mass gradients in 2D

• Galaxies with a background density of

• Galaxies with a background density of

Mass gradients towards filaments: Is it an effect purely driven by the local mass-density relation?

Reshuffling of galaxy masses w.r.t positions in given density bins (preserving the mass-density relation)

Mass gradients in 2D

Laigle+ in prep.

Mass gradients are partly explained by the local mass-density relation

At a fixed mass, passive galaxies closer to filaments than star forming

Reshuffling of galaxy types w.r.t positions

in given density and mass bins (preserving the mass-density relation)

Reshuffling of galaxy types w.r.t positions

in given density and mass bins (preserving the mass-density relation)

Reshuffling of galaxy types w.r.t positions

in given density and mass bins (preserving the mass-density relation)

At a fixed mass, passive galaxies closer to filaments than star forming

SUMMARY

1) We are able to extract reliably the cosmic web in 2D with photometric redshift and to measure an environmental signal

2) We find mass and colour-type gradients towards filaments for galaxies both in the simulations and in the observations

3) Those gradients can not be explained by the local density itself.

Crucial: the anisotropy of the environment

Large-scale tidal field impacts both halo/galaxy dynamics and galaxy mass assembly. Galaxy dynamics impacts star formation via the geometry of the gas inflow?

Next step:

Redshift evolution of the signal? Intrinsic alignment signal in 2D?