Workshop: The Physics of H₂ in space with the James Webb Space Telescope

Consequences of out-of-equilibrium H₂ on the chemistry of diffuse molecular clouds

<u>Outline</u>

valeska.valdivia@cea.fr

H₂ modelling in numerical simulations
Multiphase ideal MHD simulations
Consequences of warm H₂: the CH⁺ case

V. Valdivia, P. Hennebelle, B. Godard, M. Gerin, P. Lesaffre Thanks to J. Le Bourlot

IAP Nov. 9, 2016

The Physics of H_2 in space with the JWST,

DE LA RECHERCHE À L'INDUSTRIE

Introduction

Absorption:

UV Lyman and Werner bands *Copernicus, ORPHEUS, FUSE*

Emission: mid-IR and NIR *ISO, Spitzer, JWST*

valeska.valdivia@cea.fr

The Physics of H₂ in space with the JWST,

 H_2 formation on grain surfaces

The Physics of H₂ in space with the JWST,

IAP Nov. 9, 2016

valeska.valdivia@cea.fr

H₂ destruction by UV fluorescent photodissociation

Tree-based method (Valdivia & Hennebelle, 2014)

IAP Nov. 9, 2016

valeska.valdivia@cea.fr

The Physics of H₂ in space with the JWST,

H₂ Thermal feedback

Cooling:

• H₂ line emission: (Le Bourlot et al. 1999)

$$W(H_2) = \frac{1}{n(H_2)} \sum_{vJ, v'J'} (E_{vJ} - E_{v'J'}) n_{vJ} A(vJ \to v'J')$$

Heating:

valeska.valdivia@cea.fr

- H₂ formation: 1.5 eV
- H₂ destruction: 0.4 eV (Black & Dalgarno 1977, Glover & Mac Low 2007)

The Physics of H₂ in space with the JWST,

Ideal MHD multiphase simulation

RAMSES AMR code
(Teyssier 2002)
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0,$$
(Valdivia et al. 2016) $L = 50 \text{ pc}$
 $N = 1 \text{ cm}^{-3}$ $\frac{\partial \rho v}{\partial t} + \nabla \cdot (\rho vv - BB) + \nabla P = -\rho \nabla \phi,$
 $\frac{\partial t}{\partial t} + \nabla \cdot (\rho vv - BB) + \nabla P = -\rho \nabla \phi,$
 $\frac{\partial n_{H_2}}{\partial t} + \nabla \cdot (n_{H_2}v) = k_{\text{form}}n(n - 2n_{H_2}) - k_{\text{ph}}n_{H_2}$ $V_{\text{in}} = 15 \text{ km s}^{-1}$
 $B = 2.5 \,\mu\text{G}$ $\frac{\partial E}{\partial t} + \nabla \cdot [(E + P)v - B(Bv)] = -\rho \mathcal{L},$ $dx_{\text{min}} = 0.05 \text{ pc}$
 $dx_{\text{max}} = 0.2 \text{ pc}$ $\frac{\partial B}{\partial t} + \nabla \cdot (vB - Bv) = 0,$ $\nabla^2 \phi = 4\pi G \rho.$

valeska.valdivia@cea.fr

The Physics of H₂ in space with the JWST,

DE LA RECHERCHE À L'INOUSTRIE

H₂ fraction evolution

(Valdivia et al. 2016)

The Physics of H₂ in space with the JWST,

Origin of warm H_2

H₂ formation suppressed for $n_{\text{thresh}} \ge 100 \text{ cm}^{-3}$

- Clumps are dominated by the **turbulent pressure** => **Transient** structures
- H₂ can be transported from cold and dense regions towards warm and diluted environments, where it survives due to the shielding provided by the **multiphase** structure

The Physics of H_2 in space with the JWST,

IAP Nov. 9, 2016

(Valdivia et al. 2016)

DE LA RECHERCHE À L'INDUSTRIE

Good match with FUV observations

valeska.valdivia@cea.fr

The Physics of H_2 in space with the JWST,

Hybrid approach for the chemistry

- H₂ is a **bottleneck** for the chemistry
- We calculate the equilibrium abundances for all the species (besides H₂ and HI)

Right: Mass distribution in the simulation

The Physics of H₂ in space with the JWST,

Warm chemistry of the diffuse ISM

Highly endothermic reactions require warm reactants to occur efficiently.

The Physics of H_2 in space with the JWST,

- CH⁺ requires H₂ to be formed efficiently in the diffuse ISM.
- The main reaction path is **highly endothermic**. $C^+ + H_2 \rightarrow CH^+ + H$ ($\Delta E/k = -4300$ K).
- CH⁺ is easily **destroyed**.
- PDR models **failed** at explaining its abundance.

Consequences of warm H₂ on CH⁺

valeska.valdivia@cea.fr

The Physics of H₂ in space with the JWST,

Summary

- Long lived molecules, such as H₂, can be transported by turbulent motions towards warm environments.
- Once H₂ is present, the chemistry can proceed **much faster**.
- Out-of-equilibrium H₂ plays a significant role in the abundance of CH⁺, nevertheless other physical processes, such as the dissipation of turbulence, are needed to explain the observed abundances.
- The JWST will provide crucial information about the warm H₂ through rotational and rovibrational lines.

The Physics of H₂ in space with the JWST, IAP Nov. 9, 2016