H₂ in shocks models and UV excitation

1. Paris-Durham shock code

2. Influence of H_2 on shocks

3. Influence of shocks on $H_{\rm 2}$

input conditions

output - thermo-chemistry

- wave velocity
- magnetic field
- density
- irradiation
- abundances

input conditions

output - energy conversion

- wave velocity
- magnetic field
- density
- irradiation
- abundances

different versions

- LVG transfer (Flower et al. 2010)
- dust dynamics (Anderl et al. 2013)
- illuminated shocks (Lesaffre et al. 2013)
 - ✓ down/up stream rad : G₀, A_V
 - \checkmark H₂ and CO self shielding
 - ✓ photoelectric effect

state-of-the-art

- 1, 2, 3 fluids
- J-type and C-type shocks
- $n_{\rm H} < 10^6 \, {\rm cm}^{-3}$
- V_S < 40 km s⁻¹
- adsorption / sputtering / desorption from mantles
- $G_0 < 10^4$

treatments of H_2

- formation on grains
 - \checkmark simplistic prescription
 - $\checkmark k \propto n_{\rm H} n_{\rm G} S_{\rm H} \nu_{\rm col}$
- excitation
 - \checkmark formation
 - ✓ collisions (H, H₂, He, H⁺)
 - ✓ spontaneous decay

recent improvements

- H₂ electronic lines
- coupling with UV
- cascade mechanism
 from PDR code (Le Petit et al. 2006)
- FGK transfer (Federman et al. 1979)

Influence of H_2 on shocks

Influence of H2 on shocks

 $n_{\rm H} = 10^4, b = 1$

Influence of H2 on shocks

 $n_{\rm H} = 10^4, \, G_0 = 0$ 120 Vc Vs shock speed (km s⁻¹) Va 80 Vm J-type 40 C-type 0 10¹ 10² B (μG)

Influence of H2 on shocks

Influence of shocks on $H_{\rm 2}$

Influence of shocks on H2

Influence of shocks on H2

Ongoing investigations & future developments

Ongoing investigations

• Impact of UV excitation of H₂ on

 \checkmark the shock dynamics

- \checkmark H₂ emission (and other tracers)
- Formation and excitation of species in irradiated shocks, with low f(H₂)
- Application to observations

Ongoing investigations & future developments

Future developments

- shocks with radiative precursors
- improved formation of H2
 - \checkmark ER and LH
 - \checkmark impact of dust distribution
 - ✓ more accurate timescales
- improved dust treatments