Formation of massive star clusters in mergers: Witnessing the dissipation of turbulent energy

Cinthya N. Herrera

François Boulanger, Edith Falgarone, Nicole Nesvadba, Guillaume Pineau des Forets, Santiago Garcia-Burillo, Daisuke Iono, Pierre Guillard

Super Star Clusters (SSCs)

One of the most extreme forms of star formation

.⊱ Massive (>10⁵ M₀) star clusters
.⊱ Compact (a few parsec)
.⊱ Thousands of O stars
... likely the progenitors of Globular Clusters

The number of such objects greatly increases in galaxy interactions and mergers, common phenomenon in the Universe.

How do they form and early evolve?

Super Star Clusters (SSCs)

How galaxy interaction triggers the formation of SSC? High gas densities and turbulence are probably key

SSCs

Compressive

Renaud et al. 2009

Simulations of the Antennae galaxies: Compressive tides

Key idea: To search for early stages of massive cluster formation by combining tracers of gas mass AND turbulent energy dissipation

Super Star Clusters (SSCs)

How galaxy interaction triggers the formation of SSC? High gas densities and turbulence are probably key

SSCs

Renaud et al. 2009

Simulations of the Antennae galaxies: Compressive tides

NGC 4039

Overlap region

S. .

NGC 4039

SSCs: Age < 10 Myr Mass > $10^5 M_{\odot}$ Whitmore et al. (2010)

Overlap region

• NGC 4038

Overlap region

NGC

SSCs: Age < 10 Myr Mass > $10^5 M_{\odot}$ Whitmore et al. (2010)

ISO Vigroux et al. (1996)

• NGC 4038

NGC 4039

SSCs: Age < 10 Myr Mass > $10^5 M_{\odot}$ Whitmore et al. (2010)

CO(1-0) integrated emission (Wilson et al. 2000) $\Omega=3$ "x5"

A few SSCs associated with SGMCs

• NGC 4038

NGC 4039

Overlap

region

SSCs: Age < 10 Myr Mass > $10^5 M_{\odot}$ Whitmore et al. (2010)

CO(1-0) integrated emission (Wilson et al. 2000) $\Omega=3$ "x5"

A few SSCs associated with SGMCs

HST CO(3-2) ALMA Whitmore et al. 2014 $\Omega=0.5$ "

NGC 4039

Overlap region

H₂ S(3) Spitzer (Brandl et al. 2009) $\Omega_{\text{beam}} \sim 5$ "

NGC 4038

VLT/SINFONI H₂ 1-0 S(1)

 $\Omega_{beam} = 0".6x0."7 \sim 60 \text{ pc}$

0

Herrera et al. (2011, 2012)

Brandl et al. (2009)

 $\Omega_{beam} \sim 5"$

 $H_2 S(3)$

Brandl et al. (2009)

Herrera et al. (2011, 2012)

Nature of the H₂ emission

Image: H₂ 1-0 S(1) Contours: CO(3-2)

- Near-IR H₂ emission is bright and diffuse and associated to SGMCs.
- Extinction-independent diagnostics
 H₂ 2-1/1-0 S(1), H₂ 1-0 S(1)/ Brγ
 → H₂ emission is shock excited

H₂ emission is tracing the dissipation of the mechanical energy of the gas driven by the galaxy interaction (Herrera et al. 2011).

There is a **unique** source where the H₂/CO ratio is the largest. **Localized mechanical energy dissipation**.

H₂ compact source

H₂ compact source

H₂ compact source

H₂ compact source

H₂ compact source

- Source is compact (≤50 pc)
- Very bright in H₂, $L_{H2} = 2 \times 10^6 L_{\odot}$
- Located at the interphase of blue and red shifted gas.
- FWHM of H₂ and CO lines are \sim 90 km/s.
- $M_{vir} = 5R\sigma^2/G \sim 5 \times 10^7 M_{\odot}$
- ▶ Very little star formation ($M_{\bigstar} < 10^4 M_{\odot}$)

Have we discovered a massive cloud which will form a SSC as the gas turbulent energy dissipates?

H₂ compact source: Dynamical state? $M_{1.3mm} = 3.7 \pm 1.6 \times 10^6 M_{\odot} << M_{dyn} \sim 4 \times 10^7 M_{\odot}$

The source is not a gravitationally bound cloud

→ bound by external pressure?
 (Johnson et al. 2015)
 It needs P_{ext}~10⁹ K cm⁻³

Overlap region:

- 5 massive (>10⁵ M_{\odot}) and young (<5 Myr) SSCs (Whitmore et al. 2010).
- 1 Pre-cluster cloud

We have identified a short evolutionary stage in the formation of SSCs.

Tdiss ~τcross ~1Myr

H₂ exquisite dissipation tracer in starbursts

H₂ is tracing the dissipation of energy and is powered by shocks.

But, no detection of SiO(2-1) nor SiO(5-4) with ALMA.
Background radiation field of ~10³ G₀ may destroy this molecule (P. Lessafre priv. comm.).
In starbursts galaxies we NEED to look at H₂!

Plans with the JWST

H₂ line emission are exquisite tracers of the dissipation of kinetic energy in the cold ISM of the Antennae through shocks.

With the JWST we will look for PCC-like sources in starburst galaxies

- Compact sources (<50pc) \rightarrow 0."2 @ 50 Mpc
 - 0."3 @ 34 Mpc
- H₂ luminous (>10⁶ L_{\odot})

We will complement JWST (H₂) with ALMA (CO)

- Survey of H_2 emission in large sample.
- Statistics to constrain the evolutionary timescale of SSC progenitors.
- With spectroscopy, study their velocity structure: dynamics!

Plans with the JWST

MIRLIFU:Medium Resolution Spectrograph4 IFUs to cover 5-28 μm

FOV:

3."6x3."6 to 7."6 x 7."6 (~6"x6" for H₂ S(2)). Angular resolution: 0."2x0."2 to 0."6x0."3 (0."4x0."2 for H₂ S(2))

VLT/SINFONI H₂ 1-0 S(1)

 $\Omega_{beam} = 0".6x0."7 \sim 60 \text{ pc}$

0

Herrera et al. (2011, 2012)

Brandl et al. (2009)

 $\Omega_{beam} \sim 5"$

 $H_2 S(3)$

Plans with the JWST

MIRI IFU:Medium Resolution Spectrograph4 IFUs to cover 5-28 μm

FOV:

3."6x3."6 to 7."6 x 7."6 (~6"x6" for H₂ S(2)). Angular resolution: 0."2x0."2 to 0."6x0."3 (0."4x0."2 for H₂ S(2)) En 2.7h, S/N=10, \rightarrow sensitivity: 1 - 6x10⁻²⁰ W/m² For PCC-like sources, 2x10⁻¹⁶ W/m² vs ~10h imaging H₂ S(2) VISIR/VLT Galaxies @ 20Mpc

6" = 580pc

IRAC/Spitzer

Galaxies @ 120 Mpc

NGC6090

6" = 3.5 kpc

Image: H₂ Contour: K-band

Summary

- Discovery of early steps in the formation of super star clusters by looking at H₂ as tracer of energy dissipation.
- The non-detection of SiO tell us that, in starbursts, H₂ line emission are exquisite tracers of the dissipation of kinetic energy in the cold ISM through shocks.
- JWST reaches resolutions to do complementary studies with ALMA (cold molecular component).
- With the JWST, we will be able to study the formation of massive star cluster by discovering and characterizing their progenitor clouds.