The Milky Way and its environment Paris, 22th September 2016

Stellar population properties of disc galaxies in the local universe Rosa González Delgado Instituto de Astrofísica de Andalucía (CSIC), Spain

Ruben García Benito Clara Cortijo Ferrero Rafael López Fernández Roberto Cid Fernandes Eduardo Lacerda André Amorim

Enrique Pérez

and Sebastian Sánchez (PI) and the CALIFA collaboration

Spatial Resolve Stellar Population Properties

al. 2015, A&A, 576, 135 6 <u>Sarcía-Benito</u>

IFS to spatial resolve galaxies in their components: to gain insights into the drivers of galaxy formation and evolution

-23

-22

-21

-20

-19

-18

Log stellar mass, Ma

<u> </u>	hre global and/or local p	rocesse	s responsible of
	driving the evolut	rion of g	galaxies?
	<u>Global relations</u>	L	Local relations
*	Mass-Metallicity	*	µ ≭- local Z
*	Mass-SFR	*	μ *- Σ _{SFR}
*	Mass-age	*	µ *- local age
ain	sequence of Star Formation	(MSSE)	

-ocal MSSF

Sánchez & CALIFA DR3, 2016

 $\int_{a}^{b} \int_{a}^{b} \int_{a$

González Delgado +, 2016

Specification	MaNGA	SAMI	CALIFA	Atlas3D
Sample Size	10,000	3,400	600	260
Selection	$M > 10^9 M_{\odot}$	$M > 10^{8.2} M.$	$45" < D_{25} < 80"$	$E/S0M > 10^{9.8}M.$
Radial coverage	$1.5r_e$ (2/3), $2.5r_e$ (1/3)	$1-2r_e$	$>2.5r_e$	$<1r_e$
S/N at $1r_e$	15-30	10-30	$\sim \! 30$	15
Wavelength $range(Å)$	3600-10300	3700-7350	3700-7500	4800-5380
Instrumental resolution	$50-80 \mathrm{~km/s}$	75/28 km/s	$85/150 \ {\rm km/s}$	$105 \mathrm{~km/s}$
Input Spaxel Size	2.0″	1.6'''	$2.7^{\prime\prime}$	1″ ΄
Input Spaxels per object	$<\!\!3\times\!127^{1}$	3×61	3×331	$1,\!431$
Spatial FWHM	2''	$2^{\prime\prime}$	$2.5^{\prime\prime}$	1.5''
Telescope size	$2.5\mathrm{m}$	$3.5\mathrm{m}$	$3.5\mathrm{m}$	$4.2\mathrm{m}$

IFS surveys for nearby universe

ATLAS3D: Cappellari et al. 2011 CALIFA: Sánchez et al. 2012 SAMI: Croom et al. 2012

al. 2015

MaNGA: Bundy et

Properties of CALIFA sample

• 937 galx SDSS DR7

• 0.005 < z <0.03

• 45" < isoAr < 79.2"

sub-sample in SP studies

• ~430 galx with V500+V1200

Walcher +, 2014, A&A, 569, A1

Galaxies in 3D

To dissect galaxies in space and time: 2D spatial and lookback time IFS surveys Fossil record method

<u>Stellar mass surface density (µ*)- age</u> <u>Global relation</u> <u>Local relation</u>

Kauffmann +, 2003

Gallazzi +, 2005

′ SDSS: M★ – age

<u>González Delgado +, 2014, A&A, 562, 47</u>

SFH in disks and spheroids Disks: μ * drives the ages (SFH) of galaxies Spheroids: M*

* CALIFA: $\mu *$ - age

Stellar mass surface density (μ *)- Metallicity (Z*)

<u>Global relation (SDSS)</u>

Local relation

* CALIFA: $\mu * -Z*$ Chemical enrichment

stDisks: μst regulates the metallicity, galaxy Mass modulates the amplitude

* Spheroids: galaxy Mass dominates the physics of chemical enrichment (except for low mass galaxies) González Delgado et al. 2014b, ApJ, 791, L16

μ *-intensity of the SFR: μ * - Σ_{SFR}

<u>Global relation</u>

* SDSS: M* - SFR (MSSF)

SFR = cte M_*^{β} with $\beta < 1$ (0.75 in RP2015)

- * SFR = cte $\sum_{SFR}(HLR)/\mu_{*}(HLR) M_{*}$ * \sum_{SFR} = cte μ_{*}^{\propto}
- * $\mu_* = \operatorname{cte} M_*^{\gamma}$

* SFR = cte
$$M_*^{1-\gamma(1-\infty)}$$

* with \propto = 0.8; γ = 0.5; β < 1

Local relation CALIFA: $\mu \star - \Sigma_{SFR}$ 2016, A&A, 590, $\log \Sigma_{SFR} \left(M_\odot \; Gyr^{-1} \; pc^{-2}
ight)$ $\sum SFR = cte \ \mu_{*}^{\infty} \ with \ \propto = 0.8$ cte = local sSFR= Σ_{SFR}/μ_* increases for early to late type spirals Global relation is sub-linear (< 1)

because the sub-linearity of the local relation

Star formation along the Hubble sequence

Radial profiles: Σ_{SFR}

* Spirals: $\Sigma_{SFR}(1 \text{ HLR}) \sim 20 \text{ Msun Gyr}^{-1} \text{ pc}^{-2}$ * Spirals: the dispersion in $\Sigma_{SFR}(R)$ is small * MSSF is a sequence with $\Sigma_{SFR} \sim \text{constant}$

Star formation rate density

- • ρ SFR = (0.0105 ± 0.0008) M \odot yr⁻¹ Mpc⁻³
- Most of the star formation is occurring in the disks of spirals (R> 1 HLR)
- E, SO, and the bulge of Sa and Sb contribute little to the recent SFR of the Universe, which is dominated by the disks of Sbc, Sc, and Sd spirals.

The Scalo b birthrate parameter

• The volume averaged birthrate parameter, b' = 0.39 \pm 0.03,

- Present day Universe is forming stars at \sim 1/3 of its past average rate.
- E, SO, and the bulge of Sa and Sb contribute little to the recent SFR of the Universe, which is dominated by the disks of Sbc, Sc, and Sd spirals.

Star formation along the Hubble sequence Radial profiles: local sSFR = $\Sigma_{SFR}/\mu \star = T^{-1}$

Galaxies are quenched inside-out *sSFR(R) values scale with Hubble type *sSFR(R) increases radially outwards, with a steeper slope in the inner 1 HLR. *galaxies are quenched inside-out, and this process is faster in the central, bulge-dominated part than in the disks.

González Delgado +, 2016, A&A, 590, 44

Quenching related with the morphology

Radial profiles of age

Galaxies of equal M*: have different galaxy averaged age, and radial age gradients.

• SFH and their radial variations are modulated primarily by galaxy morphology, and only secondarily M*.

• Galaxies are morphologically quenched, and the shutdown of star formation occurs outwards and earlier in galaxies with a large spheroid than in galaxies of later Hubble type.

Stellar Population properties along the Hubble sequence Radial profiles: ages

- declining profiles: galaxies are growing inside-out
- largest age gradient in MW like galaxies (Sbc)
- downsizing behavior is preserved with radial distance
- E and SO: no evidence of growing through minor dry mergers, no inversion of the (log age) toward older ages beyond 1–2 HLR

González Delgado et al. 2015, A&A, 581, 103

Stellar Population properties along the Hubble sequence

Radial profiles: stellar metallicity

- declining profiles, evidence of disks growing inside-out
- largest gradient in MW type galaxies (Sbc), as predicted by chemical evolution models (e.g. Molla & Díaz 2005)
- Sbc galaxies have a ▽⟨logZ∗⟩~ -0.1 [dex/HLR] similar to the predictions by RaDES simulations (Few et al. 2012; Pilkington et al. 2012a).
- later type: very flat, small ∇ in (log Z)M L
- dispersion in the ∇ in (log Z)M-M** relation is related with morphology
- E and SO: no evidence of a steepening of (log Z)M L beyond 1-2 HLR if they were growing through minor dry mergers

Mass assembly

Galaxies grow inside-out

Pérez et al. 2013, ApJL, 764, L1

Other evidence:

- Negative radial stellar age gradients.
- Negative metallicity gradients
- Galaxies are more compact in mass than in light

HMR/HLR = Half Mass Radius / Half Light Radius

0

1.2Sbc Sb Sd Sc Sa **S**0 Е 1.0 HMR/HLR 0.8 0.6 GMe ★ CBe 10.0 0.4 (yr) Sd Sc Sbc Sb Sa SO (R)type 9.5 Γ age 9.0 $\langle \log$ 8.5

Evolutionary stellar population synthesis with MILES – II. Scaled-solar and α -enhanced models

A. Vazdekis,^{1,2★} P. Coelho,³ S. Cassisi,⁴ E. Ricciardelli,⁵ J. Falcón-Barroso,^{1,2}
 P. Sánchez-Blázquez,⁶ F. La Barbera,⁷ M. A. Beasley^{1,2} and A. Pietrinferni⁴

BaSTI, IMF Salpeter, MILES and alpha-enhanced SSP (a/Fe = 0, 0.4)

Preliminaries results from the spectral fit using CSP

CSP with SFR= 1 Msun/yr and width 0.2 dex in time ages (18 CSP) = 11.5, 7.25, 4.55, 2.85, 1.8, 1.14, 0.72, 0.45, 0.285, 0.18, 0.11, 0.072, 0.045, 0.028, 0.018, 0.011, 0.006, 0.002 Gyr metal (8) = 0.4, 0.25, 0.06, -0.35, -0.66, -1.26, -1.79, -2.28 alpha/Fe = 0 (solar scale), 0.4

2D maps of SFH of spirals: Radial x lookback time Mass formed at each epoch per pc² and Luminosity per pc²

Spirals: Mass fraction and mass growth

Spirals: SFR vs lookback

- In the past, SFR was higher in more massive spirals
- SFR declines faster in the inner part of the galaxy than in the disk
- Sbc (Mass ~8x10^10 Msun, Salpeter IMF), SFR= 14/1 (HLR < 1) and 7/1 (HLR > 1)
- Sc (Mass ~5x10^10 Msun, Salpeter IMF), SFR= 9/1 (HLR < 1) and 4/1 (HLR > 1)

CALIFA SFH: Sb-Sbc-Sc

Simulations of MW thick disk from Haywood et al. 2016

Solar vicinity: 1.5–2 HLR of Sbc–Sc in CALIFA

MW APOGGE

Simulations of MW thin disks

Minchev et al. 2014

Simulations of MW disks

CALIFA: Sb-Sbc-Sc $\bigtriangledown \langle \log Z_* \rangle \sim -0.1 \text{ [dex/HLR] (-0.02 dex/kpc)}$

Conclusions

* Hubble sequence is a useful scheme to organize galaxies by their spatially resolved stellar density, age, and metallicity.

* Spirals form a galaxy sequence with constant intensity of the SFR.

* Local processes are relevant in setting the SF in the disks of galaxies probably through a density dependence SFR law.

* Stellar mass sets the average properties of the stellar population in galaxies, but have little impact on quenching.

* Morphology plays the main role in the shut down of the star formation activity in galaxies.

*Pérez et al. 2013, ApJL, 764, L1
*Cid Fernandes et al. 2013, A&A, 557, 86
*Cid Fernandes et al. 2014, A&A, 561, 130
*González Delgado et al. 2014, A&A, 562, 47
*González Delgado et al. 2014, ApJL, 791, L16

*García-Benito et al., 2015, A&A, 576, 135
*González Delgado et al. 2015, A&A, 581, 103.
*López Fernández et al. 2016, MNRAS, 458, 184
*González Delgado et al. 2016, A&A, 590, 44
*Cortijo-Ferrero et al. 2016, MNRAS, submitted