

## Observed abundance ratios

Neutron-Capture Elements









1. Large scatters at least suggest r-process site(s) must be specific events.


## Candidates of the r-process site(s)

Most of elements heavier than Fe are produced by r-process $r$ (apid)-process: time scale of n-capture $\ll$ that of b-decay


1. Core-Collapse Supernovae (since Burbidge+ 1957, Cameron 1957)

2. Neutron Star Mergers (since Lattimer+1974, Symbalisty+ 1982)

But SNe are difficult to produce heavier r-elements...
Wanajo, Janka, Müller $(2011,2014)$ suggests that electron capture SNe can be the souce of lighter r-nuclei, using self consistent exploding model of ECSNe.


ECSNe possibly be the site of trans-Fe including weak r-process, but cannot produce main r-process elements....

Can NS merger be the r-process site?


* good agreement with the full range of the solar r-pattern
* strong support for NS mergers being the origin of $r$-elements


Time scale of merger ${ }^{\mathrm{T}[\mathrm{Myr}}$

* Classical formation channel :
$\mathrm{t}_{\text {NSM }} \sim 100 \mathrm{Myr}-10 \mathrm{Gyr}$
* New formation channel
$\quad \mathrm{t}_{\text {NSM }} \sim 10^{3}-10^{5} \mathrm{yr}$
$\rightarrow$
less than $8 \%$ of NSMs (Dominik+13)
$\rightarrow$ less than 8\% of NSMs (Dominik+ 13)


## Serious Problem in Chem. Evol. with NSMs

Long merger timescale ( $\sim 100 \mathrm{Myr}$ ) would cause the delayed appearance of Eu !?


Komiya+ 2014 Tsujuimoto \& Shigeyama 2014 ${ }^{2} t_{\text {NSM }}=10$ Myr tusm- 10 MyIf A explain observed scatters in cannot explain observed scatters in MPS??



## Mass-metallicity Relation

Observations of dwarf galaxies show good correlation between average metallicity and stellar mass, irrespective of their morphologies:

$<[\mathrm{Fe} / \mathrm{H}]>\propto(\mathrm{M} *)^{0.3}$
Average metallicity indicates the metal productivity (so-called "galactic yield") of each galaxy.

Massive sub-halos must have higher metal productivity!

## Formation Scenario of Sub-halos

One of the most plausible formation scenarios of dwarf galaxies:
As stars are formed, the ISM is ejected from a galaxy by SNe
because of shallow grav. potential.


Basic chemical evolution suggests $<[\mathrm{Fe} / \mathrm{H}]>\propto \frac{\mathrm{SFR}}{\mathrm{OFR}}$
if IMF is universal. (e.g., Pagel 1991, Prantzos 2008)

Gas Outflow Rate (OFR)

## Chemical Evolution of Sub-halos with NSMs

 Ishimaru, Wanajo, Prantzos 2015$$
\text { MMR suggests }<[\mathrm{Fe} / \mathrm{H}]>\propto \frac{\mathrm{SFR}}{\mathrm{OFR}} \propto\left(\mathrm{M}_{*}\right)^{0.3}
$$

Therefore, more massive sub-halos have higher SFR or lower OFR. Two extreme cases are considered:


Fixed values: $S F R / M_{\text {gas }}=0.20 \mathrm{Gyr}^{-1}$, OFR $/ \mathrm{M}_{\text {gas }}=1.0 \mathrm{Gyr}^{-1}$ for $\mathrm{M}^{*}=10^{8} \mathrm{M}_{\odot}$
Merger time:
$100 \mathrm{Myr}: 1 \mathrm{Myr}=95 \%: 5 \%$ NSM event rate: 1 per 1000 SNe
Constant Eu yield: $2 \times 10^{-5} \mathrm{M}_{\odot}$

## Metallicity Distribution Functions

Taking into account of the structure formation simulations and MMR, we obtain the sub-halo mass function as: $\quad d N / d M_{*} \propto M_{*}^{-1.7}$

The Galactic halo is regarded as the sum of sub-halos with the weight of the sub-halo mass function.
This scenario can confirm the observed MDF of the Galactic halo.
$\square$ $\mathrm{SFR} / \mathrm{M}_{\text {gas }}=$ const.
OFR $/ \mathrm{M}_{\text {gas }} \propto\left(\mathrm{M}_{*}\right)^{-0.3}$


## Eu \& Ba Enrichment with NSMs

$\square$ SFR $/ M_{\mathrm{gas}} \propto\left(M_{*}\right)^{+0.3}$ OFR $/ M_{\text {gas }}=$ const . $\square$ SFR $/ M_{\text {gas }}=$ const. OFR $/ M_{\text {gas }} \propto\left(M_{*}\right)^{-0.3}$



Case 1 suggests that scatters in [Eu/Fe] can be reproduced with NSM, if the Galactic halo are formed from sub-halos with different SFR.

Plateau of $[\mathrm{Ba} / \mathrm{Fe}]$ at $[\mathrm{Fe} / \mathrm{H}] \geqq-3$ possibly come from new formation channel of NSMs with shorter merger time scale


## Stochastic Chemical Evolution of sub-halos with NSMs <br> Ojima, Ishimaru, Wanajo, \& Prantzos in prep.

Based on such scenario, we examine enrichment of each sub-halo by NSMs, using Monte-Carlo method.

According to the sub-halo mass function; $d N / d M_{*} \propto M_{*}^{-1.7}$ total number of model sub-halos which form the Galactic halo are given as follows.

| Stellar <br> Mass $\left[M_{0}\right]$ | $10^{4}-10^{5}$ | $10^{5-10^{6}}$ | $10^{6}-10^{7}$ | $10^{7}-10^{8}$ | $10^{8}$ <br> $-2 \times 10^{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Num. of <br> sub-halos | 741 | 147 | 29 | 6 | 1 |
| Mean <br> Num. of <br> NSMs $/$ SH | 0.174 | 1.75 | 19.1 | 184 | 694 |






## Conclusions

If the Galactic halo are formed from clusterings of sub-halos with mass depend SFH, i.e.,
$S F R / M_{\text {gas }} \propto\left(M_{*}\right)^{+0.2}$, and OFR $/ M_{\text {gas }} \propto\left(M_{*}\right)^{-0.1}$,
NSMs with long coalescence time, ${ }^{\sim} 100 \mathrm{Myr}$, well explain $[\mathrm{r} / \mathrm{Fe}]$ in MPS.

This scenario is also consistent with obs. of UfDs: ~90\%: (Almost) No r-process
~ 10\%: Strong r-enhanced stars such as Ret II.
These results strongly support NSMs as the site of r-process!

