Gaia first vintage

Anthony Brown Leiden Observatory, Leiden University brown@strw.leidenuniv.nl

Van der Marel & Sahlmann, arXiv:1609.04395

Casertano, Riess, Bucciarelli, Lattanzi, arXiv:1609.05175

Teamwork to deliver the promise of Gaia

- 10+ years of effort
- 450 scientists and engineers
- 160 institutes
- 24 countries and ESA
- Six data processing centres

gaia

What's in the Gaia DR1 delivery

1.5

0.5

PHASE

Variable stars near south ecliptic pole (~ 600 Cepheids, ~ 2600 RR Lyrae)

Gaia DR1 magnitude distribution

Gaia DR1 input data

- 14 months of input data used
- $\sim 2.3 \times 10^{10}$ transits across focal plane
- all sources treated as single

TGAS Mean no. observations per source (pixel $\sim 1 \text{ deg}^2$)

685 million sources matched to IGSL

456 million new sources in Gaia DR1

DPAC/CU3/Lindegren et al., 2016, A&A

- (α, δ) for ~ 1.1 billion sources to G = 20.7
- Epoch J2015.0, alignment to ICRF < 0.1 mas, rotation < 0.03 mas yr⁻¹
- Typical position uncertainty ~ 10 mas
- Positions of 2191 ICRF sources from special astrometric solution (Mignard et al., 2016, A&A)
 - ▶ 90% with $\sigma_{\rm pos} < 3.35$ mas
 - no systematic differences with radio positions of more than few tenths of mas

Tycho-Gaia Astrometric Solution (Michālik et al., 2015, A&A)

- Use Hipparcos or Tycho-2 position as prior to disentangle parallax and proper motion
 - ▶ 2 million stars in common with these catalogues

Tycho-2 position (~1991)

- 5-parameter astrometry from ~ 1 year of Gaia data
- No Hipparcos parallaxes used

DPAC/CU3/Lindegren et al., 2016, A&A

- Parallaxes and proper motions for ~ 2 million sources to $G \sim 11.5$ (TGAS)
- Realistic errors derived from Gaia-Hipparcos comparison
- Median position uncertainty ~ 0.3 mas
- Median parallax uncertainty ~ 0.3 mas; global zeropoint below ±0.1 mas; systematics at 0.3 mas level

DPAC/CU3/Lindegren et al., 2016, A&A

• Median TGAS proper motion uncertainty ~ 1.3 mas yr⁻¹ (semi-major axis error ellipse)

▶ Hipparcos subset: ~ 0.07 mas yr⁻¹

- TGAS and Hipparcos parallaxes are independent!
- Comparison confirms global quality of Hipparcos and Gaia
- Analysis allows for derivation of realistic error estimates
- These realistic errors are published in Gaia DR1

Gaia DR1 Photometry

- Mean G-band fluxes and errors for all Gaia DR1 sources
 - G magnitudes in VEGAMAG, zeropoints for AB
 - No pass-band calibrations, transformations to other systems to be provided

Stray light effect

- ♦ CCD-transit G-band calibration systematics at the ∼ 3 mmag level
- Bright end features related to on-board instrument configuration changes
 - will be calibrated out in future releases

Gaia DR1 Photometry

Observed scatter in CCD transits

Observed scatter in repeat measurements of constant sources demonstrates quoted uncertainties are good indicators of precision

Gaia DR1 Variable Stars

DPAC/CU7/Clementini et al., 2016, A&A

All stars from Hipparcos Catalogue (figure from Gaia Collaboration, 2016, A&A)

Paris - 2016.09.20 - 20/33

Gaia Collaboration, 2016, A&A

Full Gaia DR1 data set

- 1 million stars with parallaxes precise to $\leq 20\%$
- 90% inside 590 pc

Future

- > ~ 10 million parallaxes precise to 1%
- ~ 150 million precise to 10%
- > ~ 280 million precise to 20%

Gaia Collaboration, 2016, A&A

HR diagram colour coded by tangential velocity

- 41 136 stars with (B V) photometry selected according to: $G \le 7.5$ or $\mu \ge 200$ mas yr⁻¹ or $\varpi \ge 10$ mas
- 90% inside 360 pc

Gaia Collaboration, 2016, A&A

Proper motions Gaia DR1

- Declination zones visible in map indicate systematics in Tycho-2 proper motions
- Beware large Gaia DR1 Tycho-2 proper motion discrepancies
 - ▶ likely a problem in Tycho-2

Remarks on Gaia DR1 completeness

- Gaia DR1 not complete in any sense
- Ill-defined and celestial position dependent faint limit
- Scanning law + filtering on data quality \rightarrow source density artifacts
- Many bright stars missing at $G \lesssim 7$
- High proper motion stars ($\mu > 3.5$) arcsec yr⁻¹ missing
- High density regions (few 100 000 stars/deg²) affected by:
 - onboard resource limitations
 - no treatment of overlapping observation windows
 - completeness limit can be several magnitudes brighter
 - Effective angular resolution of catalogue not yet at end of mission (HST-like) levels
- below 4 arcsec separation many secondary components of binaries missing

Bulge region

 ω Centauri

First vintage: may have some off-tastes

Pre-Gaia

Occultation of UCAC 345-180315 by Pluto on July 19 2016 by

- Gaia position of UCAC 345-180315 released in summer 2016 (Gaia DR0)
- Occulation prediction improved
 - also using improved Pluto ephemeris from New Horizons flyby
- Successful occultation campaign thanks to Gaia position

Post-Gaia

Occultation of UCAC 345-180315 by Pluto on July 19 2016 by

- Gaia position of UCAC 345-180315 released in summer 2016 (Gaia DR0)
- Occulation prediction improved
 - also using improved Pluto ephemeris from New Horizons flyby
- Successful occultation campaign thanks to Gaia position

Actual

Occultation of UCAC 345-180315 by Pluto on July 19 2016 by

- Gaia position of UCAC 345-180315 released in summer 2016 (Gaia DR0)
- Occulation prediction improved
 - also using improved Pluto ephemeris from New Horizons flyby
- Successful occultation campaign thanks to Gaia position

See http://www.cosmos.esa.int/web/gaia/iow_20160914

Paris - 2016.09.20 - 30/33

Data access

Main portal at ESDC: http://archives.esac.esa.int/gaia

- online documentation, VO compatible, TAP interface, visualization apps
- Pre-computed cross-match to large catalogues
- Fast visualization and analysis entire DR1: http://vaex.astro.rug.nl
- Command line access: https://pypi.python.org/pypi/pygacs

Partner data centres

- Centre de Données astronomiques de Strasbourg (CDS): http://cds.unistra.fr/gaia
- ASI Science Data Center (ASDC): http://gaiaportal.asdc.asi.it
- Astronomisches Rechen-Institut (ARI): http://gaia.ari.uni-heidelberg.de
- Leibniz-Institut f
 ür Astrophysik Potsdam (AIP): http://gaia.aip.de

Affiliate data centres

- US Naval Observatory (USNO), Space Telescope Science Institute (STScI), Infrared Science Archive (IRSA)
- National Astronomical Observatory of Japana (NAOJ)
- South African Astronomical Observatory (SAAO)
- Observatoire the Paris-Meudon (ObsPM)

Gaia Data Release 1

- Major advance in mapping of the heavens
- Significant increase in the amount and precision of available fundamental stellar data
- Documentation online and in Astronomy & Astrophysics Special Feature
 Scientific use of the early data will improve quality of future data releases
 Major improvements already planned for Gaia DR2
 Have fun with the data!

ESA/Gaia/DPAC/André Moitinho & Márcia Barros (CENTRA - University of Lisbon) Annotations: Francois Mignard (OCA Nice)