

Kinematic correlations in the solar neighborhood using RAVE

Jennifer Wojno Leibniz Institut für Astrophysik Potsdam Supervisors: Matthias Steinmetz, Georges Kordopatis

Wojno et al. 2016a - 2016MNRAS.461.4246W (arXiv:1603.09339) Wojno et al. 2016b, in prep.

20.09.2016

Outline

- 1. Introduction / Motivation
- 2. RAVE selection function
 - a. Target selection and observation strategy
 - b. Two methods: field-by-field and healpix pixels
 - c. RAVE mock catalog with Galaxia
 - i. Application of selection function and uncertainties
 - ii. Results
- 3. Chemical separation of disc components using RAVE
 - a. Probabilistic method/model
 - b. Results
 - c. Further applications

[Fe/H]

RAdial Velocity Experiment (RAVE) Survey

- > 500,000 spectra
- Observed 2003 2013 with 1.2m UK Schmidt Telescope (AAO)
- Medium resolution (R ~ 7500)
- Call triplet region

RAVE Data Release 5 (DR5)

(Kunder et al. 2016)

- 520,781 spectra of 457,588 individual stars
- Radial velocities (σ_{PV} ~ 2 km s⁻¹)
- Stellar parameters: Teff, log(g), [M/H]
- Chemical abundances: Mg, Al, Si, Ti, Fe, Ni
- Distance, parallax, age estimates
- Cross-matched with: Tycho2, UCAC4, PPXML,

2MASS, APASS, WISE

- 1. Introduction / Motivation
- 2. RAVE selection function
 - a. Target selection and observation strategy
 - b. Two methods: field-by-field and healpix pixels
 - c. RAVE mock catalog with Galaxia
 - i. Application of selection function and uncertainties
 - ii. Results
- 3. Chemical separation of disc components using RAVE
 - a. Probabilistic method/model
 - b. Results
 - c. Further applications

$$S \propto S_{select}(\ell, b, I, J - K_s)$$

Potential complications:

- Observing strategy
- Fiber positioning
- Spacing between fields as a function of time (overlap)
- Input catalog sources

\rightarrow two options:

- 1. Field-by-field
- Equal areas on the sky (healpix) Gorski+05

$$S \propto S_{select}(\ell, b, I, J - K_s)$$

- 1. Introduction / Motivation
- 2. RAVE selection function
 - a. Target selection and observation strategy
 - b. Two methods: field-by-field and healpix pixels
 - c. RAVE mock catalog with Galaxia
 - i. Application of selection function and uncertainties
 - ii. Results
- 3. Chemical separation of disc components using RAVE
 - a. Probabilistic method/model
 - b. Results
 - c. Further applications

RAVE mock catalog with Galaxia: Application of selection function and uncertainties

Galaxia all-sky catalog (Sharma+11)

RAVE mock catalog with Galaxia: Application of selection function and uncertainties

Galaxia all-sky catalog (Sharma+11)

Put into healpix pixels (Gorski+05)

RAVE mock catalog with Galaxia: Application of selection function and uncertainties

Galaxia all-sky catalog (Sharma+11)

Put into healpix pixels (Gorski+05)

RAVE mock catalog with Galaxia: Application of selection function and uncertainties

RAVE mock catalog with Galaxia: Application of selection function and uncertainties

RAVE mock catalog with Galaxia: Application of selection function and uncertainties

RAVE mock catalog with Galaxia: Application of selection function and uncertainties

RAVE mock catalog with Galaxia Results

Definitions:

Giants: log(g) < 3.5

RAVE selection function RAVE mock catalog with Galaxia Results

Definitions:

Giants: log(g) < 3.5

Cool dwarfs: log(g) > 4.2, T_{eff} < 6000 K

RAVE selection function RAVE mock catalog with Galaxia Results

Definitions:

Giants: log(g) < 3.5

Cool dwarfs: $log(g) > 4.2, T_{eff} < 6000 K$ Hot dwarfs: $log(g) > 3.5, T_{eff} > 6000 K$

Definitions:

Giants: log(g) < 3.5

Cool dwarfs: log(g) > 4.2, T_{eff} < 6000 K

Hot dwarfs: log(g) > 3.5, T_{eff} > 6000

- 1. Introduction / Motivation
- 2. RAVE selection function
 - a. Target selection and observation strategy
 - b. Two methods: field-by-field and healpix pixels
 - c. RAVE mock catalog with Galaxia
 - i. Application of selection function and uncertainties
 - ii. Results

3. Chemical separation of disc components using RAVE

- a. Probabilistic method/model
- b. Results
- c. Further applications

Chemical separation of disc components using RAVE

[Fe/H]

Bensby+14, Guiglion+15, Hayden+15, Kordopatis+15b

Chemical separation of disc components using RAVE

Probabilistic method

RAVE DR4 abundance measurement errors ≈ 0.2 dex

High-res surveys have separation of \lesssim 0.2 dex

 \rightarrow Need a different approach

SNR > 80

$$f([Fe/H], [\alpha/Fe]) = f_{[Fe/H]} \times f_{[Mg/Fe]}$$

Sum of 2 (TD) or 3 (D) Gaussians, based on high-res data (Kordopatis+15b)

TD/D > 10 \rightarrow thick disc (α -high) TD/D < 0.1 \rightarrow thin disc (α -low)

Chemical separation of disc components using RAVE

Results: kinematics

R

Chemical separation of disc components using RAVE Results: kinematics

Chemical separation of disc components using RAVE Results: kinematics

[Fe/H]

Chemical separation of disc components using RAVE Results: kinematics

Results: scale lengths $h_{R} = \frac{2R\sigma_{R}^{2}}{V_{c}^{2} - \langle V_{\phi}^{2} \rangle + \sigma_{R}^{2} - \sigma_{\phi}^{2} - \sigma_{Z}^{2}}$ $h_R(D) = 4.8 \pm 0.2 \text{ kpc}$ (cf. Robin+03, Juric+08, Bovy+12) $h_R(TD) = 3.4 \pm 0.1 \text{ kpc}$ (cf. Bensby+11, Bovy+15)

Chemical separation of disc components using RAVE

Conclusions

- Two versions of the selection function(field-by-field and equal area)
- Mock-RAVE catalogue using Galaxia
 - Small kinematic biases, mostly to hot dwarfs
 - Metallicities relatively unbiased
- Chemically separated disc components
 - Not sensitive to reasonable estimates of thin/thick disc ratio
 - No difference between dwarfs/giants
 - Chemical thick disc scale length longer than thin disc
 - Method can be extended to other data sets where it is not possible to resolve two separate components a priori

Further applications

- RAVE-TGAS
 - Stellar parameters, chemical abundances for ~200k Tycho2 stars
 - Better distances, proper motions, will give better grasp on kinematics