IceCube neutrinos and the origin of cosmic-rays

E. Waxman Weizmann Institute of Science

The origin of Cosmic Rays: Open Questions

UHE, >10¹⁰GeV, CRs

UHE: Air shower composition constraints

Sibyll 2.1 Hom

QGSJÉT II-4 🛏

Auger 2010: Fe, 2015: p, He(??)

UHE: Air shower composition constraints

- Discrepant results of experimental analyses.
 Auger: {H,He,N};
 HiRes/TA: {H}.
- Discrepancies between shower models and data.
- Uncertainties in extrapolation to E_{CM}>100TeV not spanned by models used.
- Air shower analyses-Inconclusive.

>10¹⁰GeV spectrum: a hint to p's

- p + γ[CMB] → N + π, above 10^{19.7}eV.
 t_{eff}<1Gyr, d<300Mpc.
- Observed spectrum consistent with - A flat generation spectrum of p's $Q_E = E^2 \frac{d\dot{n}}{dE} = Const.$ $= (0.5 \pm 0.2)10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}}$, [EW 95, Bahcall & EW 03, Katz & EW 09]
 - Modified by p-GZK suppression.
- Q_E=Const.:
 - Observed in a wide range of systems,
 - Obtained in EM acceleration in collision-less shocks (the only predictive acceleration model).

A mixed composition?

- The suppression at 10^{19.5}eV is due to the acceleration process, just a coincidence with p-GZK.
- Large # of free parameters, yet- Auger $\sigma(X_{max})$ not explained.
- But, cannot be ruled out. E.g. talk by N. Globus.

Where is the G-XG transition?

- A flat p generation spectrum, $Q_E = E^2 \frac{d\dot{n}}{dE} = Const.$ Implies:
 - Transition at ~ 10¹⁹eV;
 - Small XG contribution at 10¹⁸eV (no "dip" model").

- Transition at 10¹⁸eV implies
 - Fine tuning of G/XG components;
 - Spectrum softer than 1/E²;
 - Q^{XG} >> Q(>10¹⁹eV).

High energy v telescopes

- Detect HE v's from $p(A)-p/p(A)-\gamma \rightarrow charged pions \rightarrow v's,$ $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}} + \nu_{\mu},$ $E_{\nu}/(E_{A}/A)\sim 0.05.$
- Goals:
 - Identify the sources (no delay or deflection with respect to EM),
 - Identify the particles,
 - Study source/acceleration physics,
 - Study v/fundamental physics.

HE v: predictions

For cosmological proton sources,

$$E^2 \frac{d\dot{n}}{dE} = Const. = (0.5 \pm 0.2) 10^{44} \frac{\text{erg}}{\text{Mpc}^3 \text{yr}}.$$

• An upper bound to the v intensity (all $p \rightarrow \pi$):

$$E^{2} \frac{dj_{\nu}}{dE} \leq E^{2} \Phi_{WB} = \frac{3}{8} \frac{ct_{H}}{4\pi} \zeta \left(E^{2} \frac{d\dot{n}}{dE} \right) = 10^{-8} \zeta \frac{\text{GeV}}{\text{cm}^{2} \text{s sr'}},$$

$$\zeta = 0.6,3 \text{ for } f(z) = 1, (1+z)^{3}.$$
[EW & Bahcall 99; Bahcall & EW 01]

- Saturation of the bound.
 - ~10¹⁰GeV -If- Cosmological p's.
 - <~10°GeV -If- Cosmological p's & CR ~ star-formation activity. Most stars formed in rapidly star-forming galaxies, which are p "calorimeters" for E_p<~10°GeV,

all p $\rightarrow \pi$ by pp in the inter-stellar gas, $t_{pp} < t_{conf} (E < 10^{6} \text{GeV})$.

[Berezinsky & Zatsepin 69]

• Prompt emission from the source, $\Phi \ll \Phi_{WB}$. E.g. "classical GRB" $\Phi_{grb} \approx 10^{-2}(10^{-1})\Phi_{WB}$ at 10⁵GeV (10⁶GeV), [EW & Bahcall 97] (For LL/Choked GRBs- see talk by Peter Mészáros).

[[]Loeb & EW 06]

Bound implications: >1Gton detector (natural, transparent)

AMANDA & IceCube

Looking up: Vetoing atmospheric neutrinos

[Schoenert, Gaisser et. al 2009]

- Look for: Events starting within the detector, not accompanied by shower muons.
- Sensitive to all flavors (for 1:1:1, v_{μ} induced μ ~20%).
- Observe 4π .
- Rule out atmospheric charmed meson decay excess:

Anisotropy due to downward events removal (vs isotropic astrophysical intensity).

Event 20 Date: 3-Jan-12

Energy: 1140.8 TeV Topology: Shower

Status: Isotropy, flavor ratio

Status: Flux, spectrum

 Excess below ~50TeV.
 If real, likely a new low E component (rather than a soft Γ=2.5 spectrum).

[e.g. Palladino & Vissani 16]

- However, note:
 - Φ ~ 0.01 $\Phi_{\rm Atm.}$ at low E,
 - Veto efficiency decreasing at low E,
 - Tension with Fermi data.

Auger's UHE limit [May 15, <2013/6 data]

IceCube's (>50TeV) v sources

- DM decay? Unlikely- chance coincidence with Φ_{WB} .
- Galactic? Unlikely.
 - Isotropy.

- Fermi's (total) γ -ray intensity at 0.1-1TeV $E^2 \Phi_{\gamma} \sim 3 \times 10^{-7} (E_{0.1 TeV})^{-0.7} GeV/cm^2 s sr$ extrapolated to IceCube's energy $E^2 \Phi_{\nu} \sim 3 \times 10^{-9} (E_{0.1 PeV})^{-0.7} GeV/cm^2 s sr \ll \Phi_{WB}$

 \rightarrow XG CR sources.

Coincidence with Φ_{WB} suggests a connection to the UHE sources.

IceCube's (>50TeV) v sources

(a) Most natural (and predicted):

XG UHE p sources, Q_E =Const., residing in (starburst) "calorimeters". Sources & calorimeters known to exit, no free model parameters. Main open question: properties of star-forming galaxies at z~1.

(b) Q>>Q_{UHE} sources with $\tau_{\gamma p(pp)}$ <<1, ad-hoc Q/Q_{UHE}>>1 & $\tau_{\gamma p(pp)}$ <<1, to give (Q/Q_{UHE}) * $\tau_{\gamma p(pp)}$ =1 over a wide energy range.

Fermi's XG γ -ray background [EGB]

10

no evolution SER index=5

 $Q_{\gamma} \sim (2/3) Q_{\nu}$.

Identifying the "calorimeters"

No sources with multiple- v_{μ} -events:

 $\Delta \Theta \approx 1 \deg$,

٠

$$N(\text{multiple } \nu_{\mu} \text{ events}) = 1 \left(\frac{\zeta}{3}\right)^{-\frac{3}{2}} \left(\frac{n_s}{10^{-7} \text{ Mpc}^{-3}}\right)^{-\frac{1}{2}} \left(\frac{A}{1 \text{ km}^2}\right)^{\frac{3}{2}}$$
$$\implies n_s > \frac{10^{-7}}{\text{ Mpc}^3}, \qquad N(\text{all sky}) > 10^6, \qquad L_{\nu} < 3 \times 10^{42} \text{ erg/s}.$$

[Murase & Waxman 16]

- Rare bright sources: Ruled out (eg AGN, n~10⁻¹¹--10⁻⁸/Mpc³).
- Angular correlation with catalogs of EM sources? Unlikely at present.

$$N_{\nu}(\mu - \text{tracks}, z < 0.1 \text{ sources}) = \frac{N_{\nu}(\text{tracks})}{N_{\nu}(\text{all})} \frac{N_{\nu}(z < 0.1)}{N_{\nu}} N_{\nu} \approx \frac{1}{5} \frac{1}{20} N_{\nu} < 1.$$

- Detection of multiple events from few nearby sources Requires $A \rightarrow A \times 10$ for $n\sim 10^{-5}/Mpc^3$ (eg starbursts).

Identifying the sources

- IC's v's are likely produced by the "calorimeters" surrounding the sources. $\Phi_{v}(\text{prompt}) \leftrightarrow \Phi_{v}(\text{calorimeter}) \sim \Phi_{WB} [e.g. \Phi_{v}(GRB) \leftrightarrow 0.1 \Phi_{WB}].$
- No $L > 10^{14} L_{sun}$ sources to 300Mpc \rightarrow UHECRs are likely produced by transient "bursting" sources.
- Detection of prompt v's from transient CR sources, temporal v-y association, requires:

Wide field EM monitoring,

Real time alerts for follow-up of high E ν events,

and

Significant [x10] increase of the v detector mass at ~100TeV.

• GRBs: $v-\gamma$ timing (10s over Hubble distance) \rightarrow LI to 1:10¹⁶; WEP to 1:10⁶.

[EW & Bahcall 97; Amelino-Camelia, et al. 98; Coleman &.Glashow 99; Jacob & Piran 07, Wei et al 16]

Future constraints from flavor ratios

- Without "new physics", nearly single parameter ($\sim f_e @$ source).
- Few % flavor ratio accuracy [requires x10 M_{eff} @ ~100 TeV]
- → Relevant v physics constraints [even with current mixing uncertainties].
 E.g. (for π decay) $\mu/(e+\tau) = 0.49 (1-0.05 Cos \delta_{CP}),$ $e/\tau = 1.04 (1+0.08 Cos \delta_{CP}).$ [Blum et al. 05; Seprico & Kachelriess 05; Lipari et al. 07;

Winter 10; Pakvasa 10; Meloni & Ohlsson 12; Ng & Beacom 14; Ioka & Murase 14; Ibe & Kaneta 14; Blum et al. 14; Marfatia et al. 15; Bustamante et al. 15...]

Low Energy, ~10GeV

$$Q_E \approx \frac{(Q_E)_{\text{Galaxy}}}{(SFR)_{\text{Galaxy}}} \times \langle SFR / V \rangle_{z=0}$$

• Our Galaxy- using "grammage", local SN rate

$$Q_E \sim [3 - 15] \times 10^{44} \left(\frac{E}{10Z \text{ GeV}}\right)^{-\delta} \text{ erg} / \text{ Mpc}^3 \text{ yr}, \quad \delta \approx 0.1 - 0.2$$

• Starbursts- using radio to γ observations

$$Q_E(E \sim 10 \text{GeV}, z = 0) \approx 5 \left(\frac{0.3}{f_{synch.}}\right) \times 10^{44} \text{ erg} / \text{Mpc}^3 \text{ yr}$$

→ Q/SFR similar for different galaxy types, dQ/dlog ε ~Const. at all ε .

A single cosmic ray source across the spectrum?

A note on prompt GRB v's

"Classical" long GRBs:

•

$$\varepsilon_{\nu,b} = 500 \left(\frac{\varepsilon_{\gamma,b}}{1 \text{MeV}}\right)^{-1} \Gamma_{2.5}^2 \text{TeV} \approx 1 \text{PeV}$$

$$\Phi_{\rm GRB} \approx 0.2 \Phi_{\rm WB} \times \min\left[\frac{\varepsilon_{\nu}}{\varepsilon_{\nu,b}}, 1\right]$$

[EW & Bahcall 97; Hummer, Baerwald, and Winter 12; Li 12; He et al 12 ...Tamborra & Ando 15]

- IC has achieved relevant sensitivity: constraining model parameters.
- LLGRBs/Chocked GRBs have been suggested to dominate IceCube's signal [e.g. Senno, Murase, and Mészáros 16].
 Talk by Peter Mészáros.

Summary

- IceCube detects extra-Galactic v's: The beginning of XG v astronomy.
 * The flux is as high as could be hoped for.
 - * $\Phi_v \sim \Phi_{WB}$ suggests a connection with UHECRs:

>10¹⁹eV CRs and PeV v's: XG p sources, $E^2 \frac{d\dot{n}}{dE} \approx Const.$, related to SFR. All >~1PeV (>1GeV?) CRs are produced by the same sources.

- Expansion of M_{eff} @ ~100TeV to ~10Gton (NG-IceCube, Km3Net):
 - Reduced uncertainties in v flux, spectrum, isotropy, flavor ratio.
 [A different v source at <50TeV? A cutoff >3PeV?]
 - Identification of CR/v "calorimeters".
 - Likely identification of CR sources by temporal ν–γ association.
 [Wide field EM monitoring, real time alerts, γ telescopes.]
 Key to Accelerators' physics, Fundamental/v physics.
- Adequate sensitivity for ~10¹⁰GeV GZK v's (ARA, ARIANNA, [Auger data]).
 Confirm (reject?): UHE CRs are p.