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© Ceneral considerations
o Relativistic collisionnless shocks
o Fermi acceleration at shocks
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General considerations

Relatlvnstlc collisionnless shocks

on at shocks

Relativistic Shocks in Astr

Ex. astro Size scale | Flow Lorentz I'
AGN Cyg A Mpc 2-20
Micro-Quasar SS433 pc >1(7)
Pulsar wind Crab (M1) pc 103 — 107
GRB GRB 110731A 10~ 2pc ~ 100

=1/y/1-V2/c2

Jets : similar mechanism on different
scales as origin of such shocks.

@ Universal presence of accretion
disks and powerful jets.

@ Radiate high energy photons (up
to TeV energy)

@ Accelerate particles above
TeV /nucleon

@ Amplify magnetic fields (or

Collapsar
generate from scratch) i

B Microblazar Y Blazar 1 Gamma ray burst
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General considerations e A=l
Relativistic collisionnless shocks
Fermi ~eleration at shocks

M 87 : Virgo Galaxy

The landscape of co nless astro/space shocks

B? (wc ) ( ¢ ) 2
o= =|— -
4r(y — L)nmc? wp v relativistic

| PWN

AGN
JELs

Magnetization

104 102 YshBsh L g
|Adapted from A. Spitkovsky O.Sihva | Plasma Astro Les Houches, March 72013 O@‘

From L. Silva, Ecole des Houches, march 2013

I. Plotnikov PIC Simulations of t Relativistic Shock




General considerations e
Relativistic co onnless shocks
Fermi eler on at shocks

To the microphysics of shocks

Electros @Haﬂtﬂhb ) .
YVeibel mediated,

Magnetization

10+ 102 1 102 YshBsh

L OSia | Pasr Astro Les Houches, March 72013

From L. Silva, Ecole des Houches, march 2013

— Magnetization parameter (o) : controls the shock structure and particle acceleration
efficiency.

— No complete theory of Magnetized relativistic collisionless shocks. While o = 0 is
well understood, and theoretical efforts in 0 < o < 0.01 limit (Lemoine & Pelletier
08,10 ; Plotnikov et al. 11,13 ; Lemoine et al. 13a,b), significant advances using PIC
simulations (Sironi & Spitkovsky 09,11, Stockem et al 11, Sironi et al 13)...
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General considerations

Relativistic collisionnless shocks
Fermi acceleration at shocks

Acceleration at shocks : Fermi I mechanism

Shocks : convergent flows with frozen-in magnetic turbulence.
Gain by cycles on both sides of the shock.

4 E+dE(Vs)
. Oorm i€

6: | O >
sl
& g

& @b %
@ &\ |/=

Downstream SF Upstream

L rrw"-'—!’“ﬁf‘
i

gy L
QT

Krimsky 77, Axford et al. 77, Blandford & Ostriker 78, Bell 78 :
Diffusive Shock Acceleration by Fermi I mecanism : power-law particle distibution
f(E) x E~%, with s ~ 2 (2.2 for UR shocks Achterberg et al. 01)

Evidenced in long-term 2D-3D PIC simulations of rel. shocks (e.g. Spitkovsky 08,
Martins et al. 09, Haugbolle 2011)
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2D PIC simulations of e~ —eT Magnetized shocks 3 :
ump conc
Shock forr

© 2D PIC simulations of e~ — eT Magnetized shocks
o Simulation setup
@ Global structure
@ Jump conditions
e Shock formation
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Simulation setup
>lob.

ump
Shock

2D PIC simulations of e~ —eT Magnetized shocks

Simulation codes

Two types of codes used : FDTD 2D PIC code “Smilei” and a pseudo-spectral 2D PIC
code “Shockapic”.// Dispersion relations of light waves from PIC codes :

FDTD, “Smilei” Spectral, “Shockapic”

Both + theoretical :

@ In theory we should get w? = w;‘;e + k2c? for a light wave in an unmagnetized
plasma. Significant deviation for FDTD solvers, more subtile for Spectral solvers

@ The difference is less obvious on the other proper plasma wavemodes (Whistler,
Langmuir, Bernstein modes)

@ Different techniques to mitigate the spurious grid-Cerenkov instability
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2D PIC simulations of e~ —eT Magnetized shocks

Simulations setup

Simulation setup
Global structure
Jump cond

Shock formation

Shock is initiated by reflection of a cold e~ — et beam on a reflecting wall at the right
boundary (piston method) — interaction of two beams is unstable and bulds a shock as
seen from the shocked plasma restframe.

Upstream Flow
—

Shock fmm[

Downstream
plasma

Wall

@ Time : Simulations done up to 2000(411;1 and
< 500“’;;1 with the Smilet and Shockapic
codes, respectively (Sironi et al 13. : > 104(4;61

@ Resolution : grid size is ~ d./4 and the box
transverse size ~ 2560,

@ Noise : 20 part./cell (2 for Shockapic)

e Grid : 20 simulations exploring o € [107%,0.1]

with each code. Complemetary ¢ = 0 and > 0.1
runs.
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Simulation setup
Global structure
Jump o
Shock

2D PIC simulations of e~ —eT Magnetized shocks

Global structure for different o (I)

Density maps of 9 = 10 shocks at
twpe = 300
@ Shock front thickness ~ 10 — 504,

o o =0 (a) : Weibel-filamentation
governed shock structure.

o At intermediate 107° < o < 1072
(b,c) : the filaments in the precursor
are slightly oblique. The precursor
lengthscale is governed by the
upstream magnetic field amplitude.
About a Larmor radius of returning
particles with energy ~vomec?

Ly ~ Ry = 'Y()mec2/(eBO) (e.g
Lemoine & Pelletier 2010).

@ For ¢ > 1072 (d) : no particle
precursor, strong EM emission from
the front (see, e.g. Gallant et al. 92).
Overshoot structure at the front.
Apparent filamentary structure
dissapears in later simulation times.
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Simulation setup
Global structure
Jump cond s
Shock formation

2D PIC simulations of e~ —eT Magnetized shocks

Global structure for different o (II)

Magnetic turbulence and phase-space structure as function of o.
Yo = 10 shocks at twpe = 2000
Left |B., — B. 0|, Right : z — p,.

@ Recover very similar structure
to the one presented by Sironi

+ Relativistic Shoc
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2D PIC simulations of e~ —eT Magnetized shocks ol
Jump conditions

Shock formation

Shock Jump conditions : density

Compression ratio Nq/Ny from simulations as function of o.
Solid lines : ideal MHD prediction from conservation laws expressed in the downstream

frame.
4 . 3
35 Ideal MHD prediction (v 10) 3.3 .
o ononeto otong n - u
3
o
50N
3 Tdeal MHD prediction (o = 10%)
z,
25
2 @79 = 10, at twye = 2 10% 2D PIC code ‘Smilei’
= 79 = 10, at twye = 3 - 10%, 2D PIC code ‘Shockapic’
4 Gallant et al 92, 7o = 10%, 1D PIC

1.5-
10° 10° 107

At low 0 < 10™* consistent with the unmagnetized jump [Taq — 1](70 — 1)/(v080)
(Blandford & McKee 76, Kirk & Duffy 99, Spitkovsky 08). At high o, Ng/Ng — 2.
Notable deviation when 1074 < o < 0.1.
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2D PIC simulations of e~ —eT Magnetized shocks ol
Jump conditions

Shock formation

Front speed

Derivation of the MHD front speed as seen from the downstream (strong shock limit)
gives

2070 = D(Taq — 1) + Taqv0e + /8012 — Dol + 0)(2 — Tag) + [2(70 — 1)(Tag — ) + Daqro0]?
¢ =
a1+ a)\/'yg —1

— Consistent with Spitkovsky 08 in ¢ = 0 limit and with Kennel & Coroniti 84,
Lemoine et al 16 for I'nq = 4/3 (3/2 here because 2D plasma). For ¢ > 1, B¢ — 1.

Comparison with simulations :

« Shock front speed for 109 < twy, < 2 10% (‘Smilei’)
Fom N, sure at twy, = 2 - 10%, (‘Smilei’)
= From Ny/Ny measure at tw,. = 3 - 10? (‘Shockapic’)
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2D PIC simulations of e .+ Magnetized shocks
Jump conditior

Shock formation

Shock formation timescales

10° Time to reach 2.8 0y density at waII.y0=1‘0
i arw,l
Fit by (17‘,:70)’
> ¥
Eﬁ10 TR
S O
3 ;
- 10
E . . L
5 Prediction from
Q]OO Bret et al. 2013 L
104»5 5 e T e At
10 10 10 10 10 10 10 10
g

-1 -1
= Torm X Wi o X v/ Yowpe for all o

-1 .
— Ttorm X Wy /0 when o close to unity
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2D PIC simulations of e~ —eT Magnetized shocks

Jump cond s
Shock formation

Case of a 0 = 10~° shock

o Well-studied case (Silva et
al. 03, Spitkovsky 08, Sironi
et al 13, Bret et al 13)

o Initial flows overlap is
Weibel-filamentation
unstable at a ~ d.,/70 scale.

o Currents reach the Alfven
limit and build up the shock
(magn. energy grows up to
the level when the oncoming
flow is stopped)

e Precursor beam of

reflected /accelerated
350 400 450 500 550 600 650 electrons — Weibel
X/d, structured precursor by
(K< Q> > 1] (=]l +] interaction of hot beam

with cold upstream flow
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2D PIC simulations of e .+ Magnetized shocks

Jump conditio
Shock formation

Case of a 0 = 1073 shock

e Mixed case. Filamentation
still dominant but
accumulation is observable
at the tip of the reflected
flow.

e Slightly oblique filaments

o Measurable rms perp
current in the precursor.

L L ! L L I L
350 400 450 500 550 600 850
X178

(KIS [=bwl+]

+ Relativistic Shoc
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2D PIC simulations of e~ —eT Magnetized shocks

Jump conc s
Shock formation

Case of ¢ > 0.01 sh

Evolution of J, for a o = 0.01,

~o = 30 shock.
J,time =20 o'
ve e
2
120
15
0 \
w0 s
&
£ w °
05
20
1
= 2 i
£ 5
A : ,
f=4 1140 1160 1180 1200 1220 1240 1260 1280 .
v Xio,

350 400 50 500 550 500 &0
X7s KK [z

KIS 1] [=]bx]+]

Density accumulation at the tip of interpenetrating beams — Shell kicked towards
downstream if pressure is not sufficient to support the shock front. Oblique filametation
(if possible) in the downstream forming region during shock formation.
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2D PIC simulations of e~ —eT Magnetized shocks

Jump cond s
Shock formation

Theoretical challenge

While the shock formation for a ¢ = 0 shock was conveniently described by Bret et al
13 and a model of a 0 > 1 shocks is described by Alsop & Arons 88, Gallant et al. 92,
the case of 0 < o < 1 is more involved

Transverse to B plasma
fluctiations for wee /wpe = 0.5 @ — Importance of the fluctuations study and
Ex beam-type instabilities
o X-mode (coupled to Bernstein modes) —
Maser-synchrotron — Parallel to shock normal

but involves transverse to By modes.

@ Filamentation, aperiodic instability — Perp to
the shock normal and to By.

@ Convenient description needs to account for
both with growing o

@ Role of third dimension in the shock
structure ?(e.g. Simulations of Sironi et al 13)
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Distribution functions
‘ticle transport downstream

Particle transport and acceleration Summary

@ Particle transport and acceleration
o Distribution functions
o Particle transport downstream
e Summary

1500
3 1000
500 Downstream Upstream
-800 -600 -400 -200 0 200 400 600 800

x — o (6c)
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Distribution functions
Particle transport downstream
Particle transport and acceleration Summ

Downstream distribution for diff. magnetizations

Downstream distribution functions f(v)

twpe
O =10 ’
0= @ For o < 10™%, acceleration similar

2000 to the unmagnetised shocks.
1800
1600 @ For o < 1072 slightly more rapid
Egg acceleration, but saturation
1000 energy reached at twpe = 2000.
800 _2
600 @ For o > 10 no supra-thermal
400 component.
200 o

10 o @ Power-law tail index s ~ 2.7

10° 10' 10° 10°

Y
KK [=l+]
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Distribution functions
Particle transport downstream
Particle transport and acceleration Summary

Maximal energy in time

10
50
& g
3
1o 10 "
2 ¢
10
10' . .t
: PRI
p i siti,
10° —— £10° * . %
est-particle electrons &= . . e
,| initially at leading edge . 2 el
10°} of the wall-reflected flow L N
= Test-particles ¢: Pop. 1 LI
} * All simulation ¢ .
10 Far downstream ¢ .
T_Shock * Test-particles ¢*: Pop. 2
formation phase g
9
10° 0% = 4 = 2 =
10 10 10 10 10 10
Test-particle positrons Shock
109 initially far upstream ”WWW
s v
= 10 =
o
%0 100 1000
twpe
1/2

@ Vmax Xt recovered, as found in Stockem et al. 11, Sironi et al. 13

® ... Ymax is not saturated for o < 10~2 at the simulations end
= 2000w;€1 ~ 600w} Probably not sufficient to fill the acceleration box and

pe,rel”
arrive to the saturation energy (as demonstrated by Sironi et al. 13).
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Distribution functions
Particle transport downstream
Particle transport and acceleration Summary

Test-particles kinematics downstream (I)

Downstream turbulence — Static decaying microturbulence.
Particles injected from the wall at twpe = 500 with p'= p,7
— Experience downstream decaying turbulence.

c =8118%e-06; t Dpe = 500 X-px: time = 500 o 'u'e
250" 3 Vi 5
Z o o
\':,ﬂ)' J
20 ,\,ﬁ{} d
>
) .
- U T Injected
< g o o 8192 test-
- I particles /
d energy.
E g from wall,
B att =500
shio 3500 1000 .
x/oe
© =8.1189¢-06; t Wpe = 2000 Xx-px: time = 2000 “p‘
"
g Follow
: kinematics
e ' & beween
L (Y
. o 500 and
100 -1 2
2000
“ . plasma
4+ times
5
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Distribution functions
Particle transport downstream

Particle transport and acceleration Summary

Test-particles kinematics downstream (II)

Diffusion coefficient in the shock propagation direction (Perp. to Bp)

10° 0
O =

Py Yinit=5 y0

c

eg Yini=3 Yo

2

10T Yini=2 Yo
[SIR)
= =15 %
<

~ ; - =
A L < - 4
oL 10 E .

< PR I .

ST
v 10, 3 5 10
Vit o
100 L L L
10° 10' 10° 10° 10°
Ato
pe

Diffusion effectively reached but D o 'yf is not obvious.
Also the diffusion ‘plateau’ is not asymptotic...
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Distribution functions
Particle transport downstream
Particle transport and acceleration Summary

Test-particles diffusion for increasing o

3
Rl ap— ‘ e
"5=92-10"° .
¥ o =3.9-10"1 . .
A g=103 . »
2|
f\10 F L] L] . ',/ 4
5 * Ty
Y o " .
O * -
A
\5 . . -
1 - A -
Q10+ * A R ) j
a - } ~X Y
0~ L L
10, 2 3 5 10

i

D saturation for increasing o. Result of lower turbulence §B2/By level or tighter
turbulence region ?
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Distribution functions
Particle transport downstream
Particle transport and acceleration Summary

diffusion

In a simple form the Fokker-Plank equation for the shock swepted particles writes

6 2 [p %] "
ot Oy Oy

D = (Av?)/At is the momentum diffusion term responsible for the isotropic part
of f (e.g. Moiseev & Sagdeev 63). Second order in energy.

A is the drag term — First order term.
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Distribution functions
Particle transport downstream
Particle transport and acceleration Summary

Summary and further ideas

@ Shock structure follows the description by Sironi et al 13, but the precursor
structure need a careful attention (importance of perp. current with growing o,
e.g., Lemoine et al. 14 and suppelementary analysis here).

@ Shock jump conditions and speed satisfactorily explained by the ideal MHD for
o < 107* and ideal MHD-EM precursor for ¢ > 0.1. Deviation at intermediate o-.

@ Shock formation ... at o < 10™% unmagnetized approx. is ok (framework described
by Bret et al. 13).

@ Requirement for a general formalism at arbitrary magnetization. Theoretically
involved because of transverse filamentation is competing with beam cyclotron
instability. Also the problem is not periodic. Note that a current-based approach is
presented in Lemoine et al. 14

@ Maximum particle energy oc v/¢, in consistency with Sironi et al. 13. But

—1/4

Ymaz X o1/ here, at shorter simulation times. While o« o in long

; . P |
simulations (> 10w, " ;).

@ Downstream particle diffusion scales as E? in weakly magnetized shocks but does
not hold at intemediate o. Eventually no diffusion for o > 1072,

@ Clear transition seen between o = 102 and o = 10~ 2 shocks.
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