

Particle acceleration at jet termination shocks Tony Bell, Anabella Araudo, Aidan Crilly, Katherine Blundell

Image Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Radio: NSF/NRAO/AUI/VLA

Quasar jet 4C74.26

x-rays, radio, infrared, optical

Quasar jet 4C74.26

Araudo, Bell, Blundell ApJ (2015)

White contours: (x-ray)

inverse Compton (on CMB) from GeV electrons Yellow contours (1.66GHz Merlin):

synchrotron from GeV electrons Red/green: infrared/optical synchrotron

Radio too thin for electron radiative coolingErMagnetic field decays rapidly – but slower than Weibel decay

Jet of the second secon

Turnover in IR/optical: electron energy = 100's GeV

 $D \sim 10^6 D_{Bohm}$ if acceleration rate = synchrotron loss rate

Similar low E_{max} in other hotspots (Mack et al 2009)

Table 5. Physical parameters.

Source	ν _b (GHz)	α	$\begin{array}{c} B_{eq} \\ (\mu G) \end{array}$	t_{rad} (10 ³ yr)	Distance (kpc)
3C105S	1.37×10^5	0.75	75	6.4	278
3C 195N	$<\!\!2.7 \times 10^{5}$	0.95	62	> 6.0	117
3C 195S	5.34×10^{5}	1.00	78	3.0	127
3C227WE	3.0×10^{5}	0.65	126	2.0	173
3C227E	1.14×10^{6}	0.75	99	1.5	169
3C 403W	$<2.95 \times 10^4$	0.55	38	>39	52
3C 445N	6.63×10^{5}	0.85	60	4.1	315
3C 445S	$8.40 imes 10^5$	0.80	68	2.8	275

Max electron energy (optical turnover, $B=100\mu G$)

$$E_{\rm max} \sim 400 {\rm GeV}$$

Why is E_{max} so low?

For details see: Araudo et al MNRAS (2016)

Scattering by small scale structure (as in Weibel)

Spitkovsky 2008

or as in presentation by Laurent Gremillet yesterday

OPTION 1: Hillas limit (1985) E_{max} = uBR

Hillas limit assumes $D \sim D_{Bohm}$ (CR mean free path ~ CR Larmor radius)

Generalised for non-Bohm diffusion (Lagage & Cesarsky 1983)

$$E_{\max} = \left(\frac{R}{\text{kpc}}\right) \left(\frac{B_0}{\mu G}\right) \left(\frac{D}{D_{Bohm}}\right)^{-1} \text{EeV}$$

In non-linear turbulence expect $D_{protons} \sim D_{electrons}$

For B=100 μ G, R=3kpc, E_{max} =400GeV

 $D \sim 10^9 D_{Bohm}$ Implies inconceivably long CR mean free path

Requires $s \sim 10^{-4} c / \omega_{pi}$ (Impossible)

OPTION 2: Synchrotron cooling Turbulence even on scale s= $c/\omega_{\rm pi}$ not reproduce $D/D_{\rm bohm} \sim 10^6$

Mean free path in random magnetic field B on scale c/ω_{pi}

$$\lambda_{\rm max} = \frac{r_{\rm g}^2(\gamma_{\rm c})}{c/\omega_{\rm pi}} \sim 0.02 \left(\frac{\nu_{\rm c}}{10^{14}\,{\rm Hz}}\right) \left(\frac{B}{100\,\mu{\rm G}}\right)^{-3} \\ \left[\left(\frac{r}{7}\right) \left(\frac{n_{\rm j}}{10^{-4}\,{\rm cm}^{-3}}\right)\right]^{\frac{1}{2}} \,{\rm pc},$$

Corresponding diffusion coefficient relative to Bohm

$$\frac{\mathcal{D}_{\text{max}}}{\mathcal{D}_{\text{Bohm}}} = \frac{\lambda_{\text{max}}}{r_{\text{g}}(\gamma_{\text{c}})} = 3.2 \times 10^{4} \left(\frac{\nu_{\text{c}}}{10^{14} \,\text{Hz}}\right)^{\frac{1}{2}} \left(\frac{B}{100 \,\mu\text{G}}\right)^{-\frac{3}{2}} \left[\left(\frac{r}{7}\right) \left(\frac{n_{\text{j}}}{10^{-4} \,\text{cm}^{-3}}\right)\right]^{\frac{1}{2}}.$$

Synchrotron cooling cannot explain turnover; requires D~10⁶–10⁷ D_{Bohm}

Acceleration rate has to be inconceivably slow to lose out to radiation losses

Any other limit to max electron energy also affects ions Therefore **Proton acceleration is also limited to ~ 400 GeV**

Option 3: Perpendicular shocks

Previous discussions:

Lemoine & Pelettier (2010), Sironi, Spitkovsky & Arons (2013), Reville & Bell (2014)

Monte Carlo with fixed scattering downstream, no scattering upstream In downstream rest frame (not shock frame)

Option 3 continued: acceleration when $v/\omega_{g0} > 1$, $s << r_g$

 $v/\omega_{g0} = 2$ $v/\omega_{g0} \ (=r_{g0}/\lambda) > 1$ allows particle to return from downstream $\frac{v}{\omega_{g0}} = \frac{scB_{amp}^2}{E(eV)B_0}$

 B_0 = uniform magnetic field B_{amp} = amplified magnetic field on scale *S* E = particle energy in eV

Condition for acceleration:

Can tolerate small s if magnetic field is strongly amplified

Option 3 continued: A consistent set of parameters

$$\frac{B_{amp}^2}{B_0^2} \sim \frac{r_{g0}}{s}$$

 B_0 = uniform magnetic field = 1 µG B_{amp} = amplified magnetic field (on scale s) = 100 µG r_{g0} = Lamor radius of proton with energy 400GeV in B_0 s = Lamor radius of proton with energy 4GeV in B_{max}

In this picture:

Shock compressed uniform perpendicular field is 1 μ G

Magnetic field amplified to 100 μ G

Amplified field on Larmor scale of 4GeV protons (mildly suprathermal)

Maximum CR energy of 400GeV set by:

CR mean free path in amplified field = CR Larmor radius in uniform field

Summary

Extragalactic jet termination shocks accelerate electrons to ~400GeV (typically)

Why this energy so low?

x Not due to Hillas limit (option 1)

x Not due to synchrotron cooling (option 2)

Need inconceivably Slow acceleration

 $\sqrt{10}$ Amplified Larmor turbulence at perpendicular shock fits data (option 3)

$$\frac{v}{\omega_{g0}} = \frac{scB_{amp}^2}{E(eV)B_0} \implies E(eV) = \frac{scB_{amp}^2}{B_0}$$