Slow UHECR Acceleration by Turbulence in Gamma-Ray Bursts

Katsuaki Asano (ICRR, U. Tokyo) Collaborators:

Yuto Teraki(YITP, Kyoto), Peter Meszaros(Penn State)

Particle Acceleration in Relativistic Jets

Shock Acceleration may be hard in highly magnetized plasma. Kirk & Heavens 1989, Lemoine & Pelletier 2010, Sironi+ 2013 etc. (SNR: non-rela, PWN: low sigma seem OK)

Acceleration via turbulence

- Park & Petrosian 1995
- Becker & Dermer 2006
- Stawarz & Petrosian 2008

In Blazars

- Bottcher+ 1999
- Schlickeiser & Dermer 2000
- Lefa+ 2011
- Kakuwa+ 2015

In GRBs

- Bykov & Meszaros 1996
- Dermer & Humi 2001
- Asano & Terasawa 2009, 2015
- Murase+ 2012

Phenomenological Treatment

Interaction with Alfven Wave

$$\delta B^2(k) \propto k^{-q} \rightarrow D_{\varepsilon\varepsilon} = \frac{\langle \Delta \varepsilon^2 \rangle}{\Delta t} \sim \frac{\xi \varepsilon^2}{l/c} \propto \varepsilon^q$$

However, the ratio $\frac{U_B}{U_e}$ is typically 0.1 in blazars. It seems that the Alfven waves cannot be the enrgy source.

Extreme Case

3C 279 2013 Flare

Extremely hard gamma-ray flare without X-ray enhancement.

Broken power-law Model parameters

Model	B1	B2
(pc)	0.03	0.12
7	20	30
$\Gamma_{j}\theta_{j}$	0.61	0.34
B' (G)	0.31	0.3
21	1	1
i	3700	2800
2	7	7
2		
23		

 $\frac{L_B}{L_{jet}} < 10^{-4}$

Alternative: Compressible Waves

 $\alpha = 10, k = 10, \theta = \pi/4,$

Acceleration by compressible wave

Transit Time Damping (Scatter by mirror force)

Formulae of Energy Diffusion Coefficient:

Non-resonant (need spatial diffusion coeff.)

Płuskin 1988

$$D_{\varepsilon\varepsilon} = \varepsilon^2 \frac{8\pi}{9} D_{xx} \int dk \frac{\delta V^2(k)k^2}{v_F^2 + D_{xx}^2 k^2}$$

The largest scale eddy dominates

 D_{xx} is written with the smallest eddy?

Cho & Lazarian 2006

$$D_{\varepsilon\varepsilon} \sim \varepsilon^2 \frac{\delta V^2}{D_{xx}}$$

Resonant $(kv_F = k_{\parallel}v_{\parallel})$ Lynn+ 2014

$$D_{\varepsilon\varepsilon}\sim \varepsilon^2 \frac{v_F^2}{cL} \frac{\delta B_F^2}{B_0^2} \int d(kL)(kL)^{1-q}$$

The amplitude is dominated by the smallest scale for q < 2.

Test Particle Simulation

Test particle simulation in pure linear Fast Waves

Results of the Test Particle Simulation

While only a small fraction of particles of $v_{\parallel} \ll c$ can be accelerated for $v_F \ll c$, almost all of relativistic particles are accelerated in $v_F > 0.1c$

Blazar Modeling

- Steady outflow
- Continuous shell ejection with a width of $R_0/\,\Gamma\,$ in commoving frame
- Electron injection from $R=R_0$ to $2R_0$ with stochastic acceleration
- Both injection and acceleration stop at $R=2R_0$

Physical Processes

- Electron injection
- Stochastic acceleration
- Synchrotron emission and cooling
- Inverse Compton emission and cooling
- Adiabatic cooling $(V \propto R^2)$
- Photon escape
- No electron escape!

Extreme Hard Blazar 1ES 1101-232

$L_{\gamma} = 2.6 \times 10^{43} \mathrm{erg s}^{-1}$ Asano+ 2014 **Electron spectrum** Photon spectrum $10^{-2} \epsilon^{2} n'(\epsilon') [erg/cm^{3}]$ 1ES 1101-232 $10^{-10} \frac{\epsilon f(\epsilon) [erg/cm^2/s]}{\epsilon}$ 10^{-4} q=5/3 10⁻¹¹ 10.0 15010-6 20.0 10⁻¹² 10-8 10^{-10} R/R₀=1.01 10^{-13} 10^{-3} 10^{0} $\overline{10^{12}} \varepsilon [eV]$ 10^{3} 10^{6} 10^{9} 10^{9} 10^{10} 10^{11} 10^{12} 10¹³ 10^{8} 10^{7} ε' [eV]

The model parameters: $\Gamma = 25$, $B_0 = 0.03$ G, $W' = R_0/\Gamma = 2.8 \times 10^{16}$ cm, $\Delta T'_{inj} = W'/c$, $K = 4.3 \times 10^{-3} \text{ eV}^{1/3} \text{ s}^{-1}$, $\dot{N}_0 = 1.5 \times 10^{46} \text{ s}^{-1}$

Expanding jet \rightarrow No steady state \rightarrow Temporal evolution is essential

Mrk421

q = 2

Low maximum energy and curved electron spectrum are naturally reproduced with temporal evolution effects.

See also Kakuwa+ 2015

FSRQ 3C 279

3C 279 Flare

Lightcurve

RX J1136.5+6737

q = 2

 $R_0 = 4.5 \times 10^{15}$ cm, $\Gamma = 30, K = 4.6 \times 10^{-4}$ s⁻¹, $B_0 = 2$ G

q=5/3 in Mrk 421

In most cases, we need q=2 (hard sphere=energy independent acc. time scale). This supports the non-resonant scattering with fast wave?

Diffusion coefficient in Mrk 421

While the required value: $K = 3.7 \times 10^{-6} \text{s}^{-1}$

Reasonable

Turbulent Acceleration is applicable for GRBs as well? Baerwald + 2015

Need 50-70 times gamma-ray luminosity for UHECRs.

Secondary gamma-ray should modify the spectrum

When we avoid the secondary with low CR luminosity.

 $f_{\rm CR} = 10$

Asano & Meszaros 2014

Explains the flux only above 10²⁰eV

Outer acceleration site

Guiriec+ 2016

Combining the spectrum and light-curve data, they proposed three component models.

Log Density (g/cm³) at Time =

250

30.000 s

UHECR acceleration at outer radius may avoid the secondary gammas.

Rayleigh-Taylor Instability at the deceleration

Duffell and MacFadyen 2013

May expect the turbulence acceleration at outer radius.

Radial Rayleigh-Taylor and Richtmyer-Meshkov Inst.

Radial oscillation and turbulence

$$\eta_0 = \frac{\gamma_{\text{jet},0}^2 \rho_{\text{jet},0} h_{\text{jet},0}}{\rho_{\text{ext},0} h_{\text{ext},0}} > 1 \quad \text{Ur}$$

Unstable

Analytic Formula of Stochastic Acceleration

Slow acceleration

Acceleration timescale is comparable to the dynamical timescale $Kt_{
m dyn} \sim 3/\xi_{0.1}$

Proton synchrotron is negligible.

$$\frac{t_{\rm syn}}{t_{\rm dyn}} \simeq 1600\varepsilon_{\rm obs,19}^{-1}\Gamma_{300}^4 f_B^{-1} L_{52}^{-1} R_{16}$$

Radiative cooling prevents the electron acceleration.

$$\gamma_{\text{max}} \simeq 7.5 f_B^{-1} \xi_{0.1}^{-1} R_{17} (L_*/L_{\gamma}) (\Gamma/127)^3$$

We cannot expect bright non-thermal emission. \Rightarrow Dark accelerator

GRB Luminosity Function and Rate

Wanderman & Piran 2010 $\phi(L_{\gamma})\mathcal{R}_{GRB}(z)d\log L_{\gamma}$ Luminosity Function $[L_{iso} > 10^{50} \text{erg s}^{-1}]$ $\left(\left(\frac{L}{2}\right)^{-\alpha}\right) < L < L$

$$\phi(L)d\ln L \propto \begin{cases} \left(\frac{L}{L_*}\right) & L < L_* \\ \left(\frac{L}{L_*}\right)^{-\beta} & L > L_* \end{cases}$$

$$\alpha = 0.2^{+0.2}_{-0.1} \qquad \beta = 1.4^{+0.3}_{-0.6}$$
$$L* \simeq 10^{52.5 \pm 0.2} \text{ (erg s}^{-1}\text{)}$$

$$\mathcal{R}_{\rm GRB} = \begin{cases} 1.3(1+z)^{2.1} \ {\rm Gpc}^{-3} \ {\rm yr}^{-1}, & {\rm for} \ z \leq 3.0 \\ 170(1+z)^{-1.4} \ {\rm Gpc}^{-3} \ {\rm yr}^{-1}, & {\rm for} \ z > 3.0 \end{cases}$$

UHECR spectrum per GRB

The CR energy is concentrated in the highest energy region. Curved Spectrum.

Total UHECR Flux and cosmogenic neutrinos

The stochastic acceleration model agrees with the observed UHECR flux with $L_{\rm CR} \simeq 10^{53.5}$ erg/s! Hard GZK neutrino spectrum.

Prompt neutrinos

Asano & Meszaros 2016

Summary

- In relativistic jets, acceleration by fast wave turbulence may be expected.
- Energy diffusion timescale becomes timeindependent.
- Blazar spectra seem support the above model.
- In GRB jets, the acceleration in the outer region may produce UHECRs with a hard spectrum, which is preferable to reduce the total UHECR energy.
- Caveat: difficult to find acceleration signature.
- Hard GZK neutrino spectrum.

Band-like Spectra

The required indices and MHD simulations seem to be reasonable.

Big Flare in FSRQ 3C 279

Hayashida+ 2015

Spectrum

Extremely hard.

Stochastic Acc. seems preferable.

Broken power-law Model parameters

Model	B1	B2
r (pc)	0.03	0.12
Γ_j	20	30
$\Gamma_j \theta_j$	0.61	0.34
<i>B</i> ′ (G)	0.31	0.3
<i>p</i> ₁	1	1
ή	3700	2800
p_2	7	7
γ2		
<i>p</i> ₃		

Magnetic Pressure Dominant Case

Mrk421: Borken-Power-Law Model

Parameter Values from the One-zone SSC Model Fits to the SED from
Mrk 421 Shown in Figure 11

Parameter	Symbol	Red Curve	Green Curve
Variability timescale (s) ^a	$t_{v,\min}$	$8.64 imes 10^4$	3.6×10^3
Doppler factor	δ	21	50
Magnetic field (G)	В	3.8×10^{-2}	8.2×10^{-2}
Comoving blob radius (cm)	R	$5.2 imes 10^{16}$	5.3×10^{15}
Low-energy electron spectral index	p_1	2.2	2.2
Medium-energy electron spectral index	p_2	2.7	2.7
High-energy electron spectral index	p_3	4.7	4.7
Minimum electron Lorentz factor	γmin	8.0×10^{2}	4×10^2
Break1 electron Lorentz factor	Ybrk1	5.0×10^4	2.2×10^{4}
Break2 electron Lorentz factor	Ybrk2	3.9×10^{5}	1.7×10^{5}
Maximum electron Lorentz factor	$\gamma_{\rm max}$	$1.0 imes 10^8$	$1.0 imes 10^8$
Jet power in magnetic field (erg s^{-1}) ^b x	$P_{i,B}$	$1.3 imes 10^{43}$	$3.6 imes 10^{42}$
Jet power in electrons (erg s^{-1})	$P_{j,e}$	$1.3 imes 10^{44}$	$1.0 imes 10^{44}$
Jet power in photons (erg s ⁻¹) ^b	$P_{j,ph}$	$6.3 imes 10^{42}$	$1.1 imes 10^{42}$

Radio should be different component in this case

Need double break and low-energy cut-off

Multiple Components?

Guiriec+ 2015

Combining the spectrum and light-curve data, they proposed three component models.

RM不安定性による磁場の増幅・乱流スペクトル

