

Science with GRAVITY the NIR interferometric imager

Thibaut Paumard^{1,2}

et al., for the GRAVITY consortium^{1,2,3,4,5,6,7}

¹LESIA (Observatoire de Paris/CNRS), ²PHASE, ³MPE, ⁴University of Cologne, ⁵MPIA, ⁶LAOG, ⁷SIM

T. Paumard et al.

Outline GRAVITY The Instrument The Galactic Center At the parsec scale Orbits of stars close to SgrA* Tracing the last stable orbit Outside the GC 3 AGNs Stellar-scale accreting systems Complex stellar systems Conclusion

Outline **GRAVITY** The Instrument

Instrument

GRAVITY, 2nd generation instrument for the VLTI

- H+K AO;
- fringe-tracker (+phase reference);
- extremely sensitive.
- ⇒ lock on 3 different sources!

Operating modes

- AO: *K* < 10;
- Fringe-tracking: K < 10;
- Science: K < 16 (17);</p>
- Baseline: 100m (UTs);
- K band, *R* = 22, 500 and 4000.

Overcome spatial crowding

Trippe et al. simulated field for E-ELT/MICADO $(1" \times 1")$

VLT (8 m)

T. Paumard et al.

The orbits of S stars are Keplerian

T. Paumard et al.

Fast precessing orbits

- At most 5% of the $\simeq 4 \, 10^6$ solar masses is extended, within the orbit of S2 (Mouawad et al. 2005);
- Is SgrA* still point like at the mas scale?
 - binary system?
 - contribution from a cluster of low-mass/intermediate mass BHs?
- Side questions: mass function and light/mass ratio of the cusp.

Down-sized S-cluster

- Short orbital periods (≲ 1 yr);
- fast precession (validate GR);
- probe density profile closer to SgrA*;
- get the mass included within 100 R_S.

PSF: 3 (V, φ) sets, K-band, 4 UTs

Assumed constraints:

- 3 hours per obs.;
- 5 sp. elmnts from 2.0 to 2.4 microns;
- dynamic range: \simeq 1 mag;
- error on visibility: 1%;
- error on phase: 2°.

Synthesised image

Synthesised image cleaned 6 stars, $m_{\rm K} \simeq 18-19$

T. Paumard et al.

3 months proper motion: May (2 (V, φ) sets)

T. Paumard et al.

3 months proper motion: June (3 (V, φ) sets)

T. Paumard et al.

3 months proper motion: July (2 (V, φ) sets)

T. Paumard et al.

2 seasons proper motion

T. Paumard et al.

2 seasons proper motion

T. Paumard et al.

Detect new stars on tight orbits

- Detect relativistic effects;
- Detect dark matter cusp;
- Discriminate smooth DM vs. discrete DM.

Sgr A* has flares

T. Paumard et al.

Whaterever the nature of flares

- Flare emission comes from matter;
- Near SgrA*, matter moves at relativistic velocities;
- $c = 10 \mu as/min$
- $R_{\rm S} = 10 \mu {\rm as}$

Imaging @ 1 mas, astrometry @ 10 μ as

(Glindemann & Lévêque 2000)

B = 100-m baseline;
reference-science

objects distance:

 $\Rightarrow \sigma_{\Theta} = 1 R_{\rm S} = 10 \ \mu \text{as}$ accuracy in $t = 65 \ \text{s}$ integration time!

 $\Theta = 1.2''$:

T. Paumard et al.

T. Paumard et al.

T. Paumard et al.

T. Paumard et al. Science with GRAVITY

T. Paumard et al.

T. Paumard et al.

Astrometry of flares

A flare model

- Orbiting spot;
- On Last Stable Orbit;
- Shredded by tidal forces.

Whatever the model, 10μ as is the right scale

- $c = 10\mu as/min$
- $R_{\rm S} = 10 \mu {\rm as}$

Unique calibration needs

To calibrate visibilities:

- Point like stars at K < 10, all over the (Paranal) sky: check that they are really point-like (e.g. not astrometric binaries), measure distance to help constrain apparent size;
- Point-like stars of K < 16, at less than 2" from K < 10;
- To translate phases into arcseconds, need to measure the astrometric baseline:
 - Well known binaries all over the sky.

Outline Outside the GC AGNs Stellar-scale accreting systems Complex stellar systems

AGNs Disks & jets Astrometry

Active Galactic Nuclei

Becklin & Neugebauer 1975, 0.1pc aperture

T. Paumard et al.

Same resolution up to 20 Mpc

- Probe central 100 pc at any redshift;
- 11 pc res. in quasar PDS456
 (z = 0.184);
- 0.1 pc within 20 Mpc (Circinus, Cen A);
- Velocity gradient in BLR ⇒ rotation, size, BH mass.

Stellar-scale accreting systems

Complex stellar system

Detect acceleration of stars orbiting BHs in globular clusters 10000 Galactic Typical angu 0.1 0.01 Angular distance from central black hole ("

Astrometric determination of masses

- Intermediate mass black holes:
 - GCIRS 13E;
 - Globular clusters;
- Companions in binary stars;
- Exoplanets:
 - Photocentre wobble due to orbital motion;
 - Photocentre displacement due to transit.

T. Paumard et al.

GRAVITY: general purpose imager + exceptional astrometry

- First light: November 2015!
- Optimised for top-level GC science:
 - Dynamics of stars at ~ 1000 R_s;
 - Proper motion of material at few R_s;
- High-dynamics spectro-imaging at K-band:
 - Spatial resolution: few mas;
 - Spectral resolution: up to 4000;
 - Very sensitive;
- 10µas astrometry within minutes!
- ⇒ General purpose instrument:
 - (A)GNs imaging + dynamics;
 - Spectro-imaging of protoplanetary disks & jets, microquasars;
 - Astrometric masses: black holes, brown dwarfs, exoplanets...
 - <insert favorite interferometric case here>

