

Gaia for AGN and Extragalactic Science 8 July 2015

The Radial Velocity Spectrometer (RVS) A spectrograph on-board Gaia

D. Katz (on behalf of the RVS people)

Galaxies Étoiles Physique et Instrumentation

Radial Velocity Spectrometer Concept

Integral field spectrograph

> All the light entering the field of view is dispersed on the focal plane

- Resolving power
- Wavelength range
- Multi-epoch scan

R = $\lambda / \Delta \lambda$ = 11 500 [845, 872] nm

40 epochs on average over 5 years

RVS design

RVS grating

Grating

- ➤ 20.5 × 15.5 × 0.9 cm
- Specific design for high transmission > 80%

Astrometry, photometry and spectroscopy

RVS "images"

Simulated "image" of the RVS (using the Gibis simulator)

- Spectra are 1260 × 10 pixels dispersed parallel to the scan direction
- Bluest wavelength are leading

RVS 2D spectrum

transitId=20045108895565237 Fov=0 Row=4 Strip=17

Dispersion / Along scan (AL)

1D Spectrum

http://www.cosmos.esa.int/web/gaia

Credits: ESA/Gaia/DPAC/Airbus-DS/ David Katz, Olivier Marchal and Caroline Soubiran

Gaia and RVS focus search (commissioning 2014)

1D Spectra

http://www.cosmos.esa.int/web/gaia

Credits: ESA/Gaia/DPAC/ Olivier Marchal , David Katz

Commissioning

Deep space radio antenna in Cebreros (Spain) Credits ESA

December/January: start of the commissioning

- Activation of the data processing and commissioning centres:
 - ESAC (Science Operation Centre)
 - Paris observatory
 - MSSL
 - Heidelberg
 - Cambridge, Edinburgh, ...

Commissioning/calibration activities

- CCDs
- On-board software
- Resolving power
- ..

RVS is nominal.

Nominal mission started 18 July 14

Volume of data

- June 14
- July 14 June 15

1.5 10⁹ spectra

4.4 10⁹ spectra

Issues

Higher level of straylight than expected

- \checkmark Some impact, in particular, on the RVS faintest stars.
- ✓ Mostly sun light (for the RVS)
- ✓ <u>Mitigation</u>: on-board software upgraded to "adapt" the RVS to the straylight (software uploaded and tested in April-May 15).

Telescopes slow transmission loss

- \checkmark Condensation of water ice
- ✓ <u>Mitigation</u>: heat specific mirrors
- ✓ Firsts decontaminations fully successful

Signal to noise

Signal to noise ratio

GrvsS/N
/ mission7.270010.6100117513.31015.12

http://www.cosmos.esa.int/web/gaia/sn-rvs

Radial velocities

http://www.cosmos.esa.int/web/gaia

Radial velocities

http://www.cosmos.esa.int/web/gaia/rvsperformance

Vr versus scanning law

K1III star: 15 km/s	24 E	
(assuming 20% dea	d-time)	
Nb.	transit	ΔV
5% minimum	< 23	-0.3
Average	40	0
5% maximum	> 62	+0.25

The time domain

HIP 68064

Eclipsing binary of Algol type (detached)

HIP 68064 (V=6.79)

credits: ESA/Gaia/DPAC/CU6/Observatoire de Paris-Meudon/Olivier Marchal & David Katz

Parameters from the RVS

Stellar and interstellar parameters

- \blacktriangleright Radial velocitiesV \leq 16-16.5 (K giants) \blacktriangleright Rotational velocitiesV \leq 12-13
- Atmospheric parameters $V \le 12-13$ and much fainter with spectro-photometer
- $\blacktriangleright Abundances \qquad \qquad V \leq 11-12$
- $\blacktriangleright Interstellar reddening \qquad \qquad V \leq 12-13 \quad \text{from 862 nm DIB}$

***** Diagnostics

Binarity/multiplicity, variability, ...

Interstellar reddening

credits: ESA/Gaia/DPAC/CU6/Observatoire de Paris-Meudon/Olivier Marchal, Carine Babusiaux & David Katz Diffuse Interstellar Band(DIB): 8620 A Correlates with E(B-V): E(B-V) = 2.72 × EW (Ang) Munari, Tomasella, Fiorucci et al., 2008, A&A, 488, 969

First data releases

1st release (2016)

- ✓ Positions (α , δ) and G magnitudes
- $\checkmark\,$ Proper motions for Hipparcos stars

➢ 2nd release (2017)

- ✓ 5 astrometric parameters (single stars)
- ✓ Integrated G, Bp, Rp photometry
- ✓ Mean Vr (single stars)
- > 3rd release
 - ✓ Better
- > 4th release
 - ✓ Even better

▶ Final release✓ Best

Hipparcos catalogue volume 1 (ESA SP-1200) and Gaia model

Ground-based projects

William Herschel Telescope

> MOONS

- ✓ MOS LR-HR IR spectrograph @VLT
- ✓ Dense Galactic areas \rightarrow bulge and disk

> WEAVE

✓ MOS LR-HR spectrograph @WHT

Maunakea Spectroscopic Explorer – MSE

- ✓ Upgrade CFHT 3.6 \rightarrow **10 m**
- ✓ Wide field MOS LR-HR spectrograph @CFHT
- ✓ Dedicated to large spectroscopic surveys

Canada-France-Hawaii Telescope