

GE

PROCESSING OF EXTRAGALACTIC SOURCES INSIDE GAIA DPAC

L. Galluccio, Observatoire de la Côte d'Azur Gaia for AGN and Extragalactic Science, Paris 8-10th July 20015

Extended Object group within DPAC

Objects of Interest

Galaxies

• Quasars

Gravitational Lenses

Is it possible to extract morphological information from the galaxies observed by the Gaia satellite?

- Gaia is made to detect and analyse pointsources object
- Extracting morphological information from galaxies is quite a challenge

Focal Plane

Input Data

- Raw Astrometric Field (AF) and Sky Mapper (SM) samples
- Galaxies sources:
 - Sources not consistent with the presence of just point sources
 - Sources classified as galaxies
- Quasars sources:
 - Initial QSO Catalogue
 - Sources classified as quasars

Output Data

Galaxy

- 2D Image
- Disc intensity, radius, ellipticity, position angle
- Bulge intensity, radius, ellipticity, position angle
- Boxiness, Discness
- Alpha/Delta Disc and Bulge
- Sersic Index
- Offset in RA of the source
- Offset in Declination of the source
- Central Profile Deviation
- Classification

Quasar

- 2D Image
- Quasar Intensity and radius
- Host galaxy intensity, radius, ellipticity, position angle
- Offset in RA/DEC of the host galaxy
- Offset in RA/DEC of the quasar
- Flag to indicate whether the quasar is multiple imaged
- Flag to identify the presence of a detectable host galaxy

Image Reconstruction

GAGNES 2015, Paris - Galluccio

FastStack Algorithm (Harrison)

 Two dimensional image reconstruction method based on one dimensional raw samples

$$r_{ij} = \frac{\sum_{k}^{N_w} \theta_k w_k}{\sum_{k}^{N_w} w_k}$$

where θ is the array of window samples, *s*1, *s*2, *s*3...*sk*...*s*_{Nw} which contribute to this pixel, *N*_w is the total number of window samples which contribute to the *i j*th pixel, and *w*_k is the weighting applied to the *k*th window sample

A window sample contributes to a pixel in the reconstructed image, if the coordinates of the centre of the pixel lie within the area of the window sample

$$w_{k} = \begin{cases} \frac{1}{n_{s_{k}}} & k \leq \alpha N_{w} \\ \frac{1}{n_{s_{k}}} \exp\left(1 - \left(\frac{\theta_{k}}{r_{ij_{0}}}\right)^{2}\right) & k > \alpha N_{w} \end{cases}$$

where n_{sk} is the number of pixels in the reconstructed image to which the window sample, s_k , contributes, α is chosen such that $0 < \alpha < 1$,

$$r_{ij_0} = \frac{\sum_{k}^{\alpha N_w} \theta_k w_k}{\sum_{k}^{\alpha N_w} w_k}$$

Test on simulated data

Galaxy Morphological Classification

Galaxy Types

Three galaxy models : Elliptical, Spherical, Irregular

GAGNES 2015, Paris - Galluccio

CASGM20 Space (Lotz et al. 2004)

- P1: Light Concentration in the center of the object Abraham et al. 1994
- P2: Signal's asymmetry Abraham et al. 1996
- P3: Smoothness of the light distribution in the image Conselice 2003
- P4: Concentration of light in pixels independently of their position (Gini coefficient Abraham et al. 2003)
- P5: Second-order moment

 of the brightest pixels
 responsible to 20% of the
 flux image (M₂₀)Lotz et al. 2004

Support Vector Machines (SVM)

- Two Steps: Training and Classification (Vapnik, 1993)
- Goal of SVM: find the hyperplane separator that has the largest distance to the nearest training data point of any class

Strategies of Training

 Use sources identified as galaxies by a GWP

Available later in the mission

Fit a sample of data with all galaxy profiles and use the best fitted profiles

Time consuming

Tests on simulations

- Use of a Java Version of LIBSVM
- Test on GIBIS Simulations

Real class	Class. as E	Class. as S	Class. as I
E	0.82 ± 0.03	0.07 ± 0.02	0.11 ± 0.03
S	0.06 ± 0.02	0.65 ± 0.04	0.29 ± 0.04
Ι	0.04 ± 0.02	0.19 ± 0.03	0.76 ± 0.04

 Test with very unbalanced training set also successful

Profile Fitting

Profile Fitting

Objective: Obtain physical parameters of the galaxies and quasars

 Important: the analysis should not be based on reconstructed images, but directly on the satellite window data

Optimization

Criterion to optimize:

MSE between the raw samples and the simulated ones

Genetic Algorithms and BFGS

- Strategy Proposed
 - Global Optimizer using just boundaries of search for parameters
 - Local Optimizer to refine the fitted parameters

Cross Entropy Method (CEM)

- Developed as an estimation
 technique for rare-event
 probabilities in discrete systems
 (using Cross-Entropy or Kullback
 Leibler divergence as measure of
 closeness between two sampling
 distributions)
- Adapted for use in optimization

The Cross-Entropy Method

A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning

Reuven Y. Rubinstein Dirk P. Kroese

Information Science & Statistics

Cross Entropy Method (CEM)

Algorithm:

- Initialize μ_0 and σ^2 . Set t = 1 1.
- Generate a random sample θ_1 , . . ., θ_N from $N(\mu_{t-1}, \sigma_{t-1}^2)$ 2.
- Order the samples from smallest to biggest, and select the N^{elite} 3. best samples
 - Let $\hat{\mu}_{t}$ be the sample mean (vector) of the elite samples

Let $\hat{\sigma}_{t}^{2}$ be the vector of variances of the elite samples

4. Update
$$\mu$$
 and σ^2 in a smooth way

 $\mu_{t} = \alpha \, \widehat{\mu}_{t} + (1 - \alpha) \, \mu_{t-1}$ $\sigma_{t}^{2} = \alpha \hat{\sigma}_{t}^{2} + (1 - \alpha) \sigma_{t-1}^{2}$

Stop at iteration t = T if some stopping 5. criterion is met. Otherwise increase t by 1 and return to step 2

Dynamic Smoothing (Rubinstein and Kroese, 2004) $\beta_{t} = \beta - \beta \left(1 - \frac{1}{t}\right)^{q}$

Variance Injection (Botev and Kroese, 2004) Add a chaos perturbation in the variance

To prevent early stop and local minima

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- Standard method for continuous black-box evolutionary optimization (always on the top ranking for the Congress on Evolutionary computation contest) *Hansen et al. 2003*
- Optimize an objective function f(x) by sampling λ candidate solutions from a multivariate normal distribution
- The best k solutions of the λ ones are used to adaptively estimate the local covariance matrix of the objective function
- Advantage: almost parameter free (only population size λ)

IPOP CMAES (Auger and Hansen, 2005) increase population size dynamically

Test on Simulated Data

Disk Intensity CEM

Disk Intensity CMAES

GAGNES 2015, Paris - Galluccio

Disk Radius CEM

Disk Radius CMAES

Bulge Intensity CEM

Bulge Intensity CMAES

Bulge Ellipticity CEM

Bulge Ellipticity CMAES

Quality of Results

•	Bulge Intensity: -2e-04 +/- 0.0527
•	Bulge radius: 0.0015 +/- 0.0212
•	Bulge ellipticity: 0 +/- 0.0014
•	Bulge position angle : 0 +/- 0.0012
•	Alpha bulge: 0 +/- 0.0051 (rad)
•	Delta bulge: 0 +/- 0.001 (rad)
•	Alpha disk: 0 +/- 4e-04 (rad)
•	Delta disk: 0 +/- 1e-04 (rad)
•	Sersic index: -0.0054 +/- 0.019
•	Boxiness: -2e-04 +/- 0.0388
•	Disk intensity: 0 +/- 4e-04
•	Disk Radius: 0 +/- 1e-04
•	Disk Ellipticity: 0 +/- 2e-04
•	Disk position angle: 0 +/- 1e-04 (rad
•	Diskness: 0 +/- 0.0014

Computational Time

Quasar Profile Fitting

Radius Host Galaxy

Ellipticity Host Galaxy

Quasar Profile Fitting

Computational Time

Conclusions

- Two operational chains : Galaxies and Quasars ... but not fully tested with real data
- One on-going module to flag Gravitational lenses processing
- When we will provide these results inside Gaia catalogue ?

... last release, until we will have enough data

