

Aligning VLBI and Gaia Extragalactic Celestial Reference Frames

On the basis of which sources?

Géraldine Bourda

Laboratoire d'Astrophysique de Bordeaux (LAB)

FRANCE

ICRF2		GCRF
3414	# of objects	~10000 - 20000
@ best 60 µas	Position accuracy	~70 μas @ G=18 ~200 μas @ G=20

Lindegren et al. 2008

3414	# of objects	~10000 - 20000
@ best 60 µas	Position accuracy	~110 μas @ G=18 ~450 μas @ G=20

Problems revealed during commissioning phase \rightarrow *Re-assessment* of astrometry –

(Mignard, EGSG 2014: Based on Gaia

performance page maintained by J. de Bruijne)

Alignment of the two frames is mandatory to ensure consistency of the measured optical and radio positions for any celestial object

Astrophysics: probe AGN geometry and physics

Expected shift between the optical and radio emission regions: up to 100-200 µas (*theory; e.g.* Kovalev et al. 2008)

Comparison of the optical and radio positions to a few tens of µas may permit to detect directly these shifts and reveal clues about AGN physics

VLBI = Very Long Baseline Interferometry ICRF = International Celestial Reference Frame

Frames Alignment – Real life

- VLBI & Gaia observations will not probe the same regions
- Interesting for astrophysical purposes: e.g. constraining the physical properties of AGNs

 <u>BUT</u>: Will this be visible? Will this be annoying for the link?

Frames Alignment – Real life

Frames Alignment – How linking @ best?

Enough transfer sources \rightarrow How many?

Homogeneous sky coverage

 \rightarrow Southern surveys on their way (ICRF3 WG)

High accuracy & stability in positions @ both wavelengths

- → Object morphology & variability are important in this respect
- \rightarrow Idea of monitoring during Gaia mission...

How minimizing core-shifts?

Transfer sources selection – 1

• Requirements

- Several hundreds of common sources
- > With a uniform sky coverage
- > Accurate Gaia positions \rightarrow Optically-bright (Magnitude \leq 18)
- ➢ Accurate VLBI positions → Good astrometric quality (e.g. no structure)

• Situation in 2007

> Only 70 ICRF sources match the criteria (Bourda et al. 2008)

• ICRF2 current situation

- > 195 ICRF2 transfer sources identified
 - → IVS proposal (Bourda & Charlot 2012)
 - 4 categories identified
 - Recommendations given
 - \rightarrow IVS regular observations since 2012

ICRF2 Transfer sources

1. Optical properties:

- ➢ 72% observable with Gaia
- Half of which optically-bright

1264 sources suitable

174 ICRF2 defining, 438 ICRF2 non-defining, 632 VCS only

2. Radio properties:

Structure index (SI) calculated

- for all sources with images available (33%)
- excluding VCS sources

195 suitable sources

132 defining, 65 non-defining

$-0 < mag \le 20$ from LQAC2

- mag \leq 18

(Bourda & Charlot 2012)

ICRF2 Transfer sources

Transfer sources selection – 2

- VLBI project initiated to find additional transfer sources using EVN and VLBA
- Original sample:
 - \succ 447 weak sources selected from NVSS (δ ≥ −10°)
 - Proper optical counterpart
 - ➢ Not in ICRF2
- Three observational stages
 - Detection: 96 hours EVN @ 1Gbps
 - Sample reduced to 398 sources (Bourda et al. 2010)
 - Imaging: 192 hours EVN+VLBA @ 512 Mbps
 - 250 sources imaged
 - 119 with appropriate structure index (Bourda et al. 2011, 2012, ...)
 - Astrometry: 72 hours EVN+VLBA @ 512 Mbps
 - 119 suitable sources observed

Step 1: VLBI detection

 Two 48-hour EVN experiments (S/X @ 1Gbps)
 EC025A: June 2007 - 224 sources
 EC025B: October 2007 - 223 sources

Weak sources in VLBI
 High sensitivity necessary
 Need large antennas & high recording rate

• S/X detection rates:

EC025A ~ 96 % EC025B ~ 82 %

Overall detection rate: ~ 89 % (398 sources detected) (*Bourda et al., 2010, A&A 520, A113*)

• Observations: 4 successive global VLBI imaging experiments (EVN+VLBA; S/X @ 512 Mbps)

Observing date	Duration time	# sources observed	# sources imaged (%)	
March 2008	48-hr	105	105 (100%)	(Bourda et al., 2011, A&A)
March 2010	48-hr	97	63 (65%)	
November 2010	58-hr	118	52 (44%)	(Bourda et al., 2015, A&A, in prep.)
March 2011	38-hr	75	30 (40%)_	J
TOTAL	192-hr	395	250 (63%)	

• **Results:** From the 250 sources imaged, about half were found to be point-like

→ 119 VLBI sources suitable for the alignment

X-band Total Flux Density

Examples of VLBI maps for « bad » sources

X-band -1^{st} contour level @ 1 - 4%

Examples of VLBI maps for « good » sources

GC030

0810+563 VLBA 8.409 GHz 2010-03-23

GC034BCD

GC034EF

Relative R.A. (milliarcsec)

1538+477 VLBA 8.409 GHz 2011-03-15

X-band -1^{st} contour level @ 1 - 4%

VLBI Images in **BVID**

SISU. 🖓	Ho	me BVID	Database access			<u></u>
		Qu	ery by : Source name	Date Coordinate	5	
Home BVID						
	For GC030:					
News	105 sources have been for	ound !	http://w/w	wohsu-h	ordeaux1	fr/BV/ID/G
	⇒ VLBI image summary	(in pdf 🔁)		vv.005.0 N		
BVID content	X-Band S-B	and				
	Choose a source in the list	<u>:</u>				
Database access	0000.400	0040-000	0407.005	0400.000	0400.000	0445-040
	0003+123	0049+003	0107-025	0109+200	0130-083	0145+210
Citations	0150+015	0210+515	0446+074	0502+041	0519-074	0651+428
Chanons	0652+426	0708+742	0741+294	0/51+306	0/5/+4/7	0806+350
	0007+003	0010+312	0021+411	0050+235	0050 094	0050+204
Links	1007+716	1000+067	1000+224	1010+320	1020+202	1020+212
	1022+354	1034+574	1040-056	1010+330	1126+237	1127+078
Contact	1002+004	1140+100	1040-056	11/5+221	1120+237	1201+454
Contact	1201-068	1212+467	1228+077	1240+367	1242+574	1201+434
	1310+314	1310+484	1312+240	1315+727	1319+006	1338+303
	1340+289	1345+735	1411+746	1420+044	1420+240	1518+162
	1520+725	1522+669	1535+231	1556+335	1603+699	1607+183
	1607+604	1612+378	1618+530	1648+417	1653+198	1714+231
	1715+425	1721+343	1722+119	1729+372	1730+604	1741+597
	1742+724	1753+338	1759+756	1810+522	1811+317	1818+551
	1832+208	1833+250	1838+575	2043+749	2052+239	2057+235
	2111+801	2116+203	2128+333	2241+200	2247+381	2300+345
	2014.400	2016+000	2020+000	2241-200	2241.001	2000-040

VLBI Images in **BVID**

Astrometric suitability

Same criterion as for the selection of ICRF2 defining

sources (continuous structure index < 3.0)

Astrometric suitability

Same criterion as for the selection of ICRF2 defining

sources (continuous structure index < 3.0)

Step 3: Astrometry

- ✓ Proposal submitted 1st February 2012
- ✓ 72-hr experiment granted and conducted in June 2012
- ✓ 119 point-like sources observed
- ✓ Global VLBI array (EVN+VLBA) S/X @ 512 Mbps
- ✓ <u>Goal</u>: Determine VLBI astrometric positions
- ✓ On-going analyses...

Transfer sources selection – 3

- VCS \rightarrow To be done (with VCS-II ?)
- LCS: LBA Calibrator Survey
 - Collab. South Africa & Australia
 - Cover southern hemisphere
 - 190 sources / proper optical counterpart
 - Imaging experiment: 1st quarter 2015
 + 2nd proposal recently submitted
 - Astrometry to carry out

- X/Ka: Collab. JPL et al. (cf. C. Jacobs)

175 sources out of 660 with a proper optical counterpart

K-band: Beginning collaboration

Prospects – Summary

- ICRF2 transfer sources
 - LQAC3 vs. OCARS
 - VCS sources to investigate in terms of SI
 - Cross checking with respect to optical properties

• <u>Current # of transfer sources</u>:

~400 VLBI-Gaia transfer sources being identified (S/X)

 \rightarrow 195 ICRF2 + 119 « weak » non-ICRF2 + ~100 potential southern (?)

• All transfer sources should be part of the core of the future ICRF3

Thanks for your attention

